Documentation

Mathlib.Analysis.Normed.Group.Real

Norms on and ℝ≥0 #

We equip , ℝ≥0, and ``ℝ≥0∞` with their natural norms / enorms.

Tags #

normed group

Equations
@[simp]
Equations
@[simp]
theorem enorm_eq_self (x : ENNReal) :
Equations
  • One or more equations did not get rendered due to their size.
instance Real.norm :
Equations
@[simp]
theorem Real.norm_eq_abs (r : ) :
theorem Real.norm_of_nonneg {r : } (hr : 0 r) :
theorem Real.norm_of_nonpos {r : } (hr : r 0) :
theorem Real.norm_natCast (n : ) :
n = n
@[simp]
theorem Real.nnnorm_natCast (n : ) :
n‖₊ = n
@[simp]
theorem Real.enorm_natCast (n : ) :
n‖ₑ = n
@[simp]
theorem Real.norm_nnratCast (q : ℚ≥0) :
q = q
@[simp]
theorem Real.nnnorm_nnratCast (q : ℚ≥0) :
q‖₊ = q
theorem Real.nnnorm_of_nonneg {r : } (hr : 0 r) :
@[simp]
theorem norm_norm' {E : Type u_5} [SeminormedCommGroup E] (x : E) :
@[simp]
theorem norm_norm {E : Type u_5} [SeminormedAddCommGroup E] (x : E) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem enorm_enorm {ε : Type u_9} [ENorm ε] (x : ε) :