Documentation

Mathlib.Analysis.Normed.Operator.Extend

Extension of continuous linear maps on Banach spaces #

In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.

noncomputable def ContinuousLinearMap.extend {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] (e : E โ†’L[๐•œ] Eโ‚—) (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) :
Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F

Extension of a continuous linear map f : E โ†’SL[ฯƒโ‚โ‚‚] F, with E a normed space and F a complete normed space, along a uniform and dense embedding e : E โ†’L[๐•œ] Eโ‚—.

Equations
  • f.extend e h_dense h_e = { toFun := โ‹ฏ.extend โ‡‘f, map_add' := โ‹ฏ, map_smul' := โ‹ฏ, cont := โ‹ฏ }
Instances For
    @[simp]
    theorem ContinuousLinearMap.extend_eq {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] (e : E โ†’L[๐•œ] Eโ‚—) (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) (x : E) :
    (f.extend e h_dense h_e) (e x) = f x
    theorem ContinuousLinearMap.extend_unique {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} (f : E โ†’SL[ฯƒโ‚โ‚‚] F) [CompleteSpace F] (e : E โ†’L[๐•œ] Eโ‚—) (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) (g : Eโ‚— โ†’SL[ฯƒโ‚โ‚‚] F) (H : g.comp e = f) :
    f.extend e h_dense h_e = g
    @[simp]
    theorem ContinuousLinearMap.extend_zero {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [AddCommGroup E] [UniformSpace E] [IsUniformAddGroup E] [AddCommGroup F] [UniformSpace F] [IsUniformAddGroup F] [T0Space F] [AddCommMonoid Eโ‚—] [UniformSpace Eโ‚—] [ContinuousAdd Eโ‚—] [Semiring ๐•œ] [Semiring ๐•œโ‚‚] [Module ๐•œ E] [Module ๐•œโ‚‚ F] [Module ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œ Eโ‚—] [ContinuousConstSMul ๐•œโ‚‚ F] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [CompleteSpace F] (e : E โ†’L[๐•œ] Eโ‚—) (h_dense : DenseRange โ‡‘e) (h_e : IsUniformInducing โ‡‘e) :
    extend 0 e h_dense h_e = 0
    theorem ContinuousLinearMap.opNorm_extend_le {๐•œ : Type u_1} {๐•œโ‚‚ : Type u_2} {E : Type u_3} {Eโ‚— : Type u_4} {F : Type u_5} [NontriviallyNormedField ๐•œ] [NontriviallyNormedField ๐•œโ‚‚] {ฯƒโ‚โ‚‚ : ๐•œ โ†’+* ๐•œโ‚‚} [NormedAddCommGroup E] [NormedAddCommGroup Eโ‚—] [NormedAddCommGroup F] [NormedSpace ๐•œ E] [NormedSpace ๐•œ Eโ‚—] [NormedSpace ๐•œโ‚‚ F] [CompleteSpace F] (f : E โ†’SL[ฯƒโ‚โ‚‚] F) (e : E โ†’L[๐•œ] Eโ‚—) (h_dense : DenseRange โ‡‘e) {N : NNReal} (h_e : โˆ€ (x : E), โ€–xโ€– โ‰ค โ†‘N * โ€–e xโ€–) [RingHomIsometric ฯƒโ‚โ‚‚] :
    โ€–f.extend e h_dense โ‹ฏโ€– โ‰ค โ†‘N * โ€–fโ€–

    If a dense embedding e : E โ†’L[๐•œ] G expands the norm by a constant factor Nโปยน, then the norm of the extension of f along e is bounded by N * โ€–fโ€–.