Extension of continuous linear maps on Banach spaces #
In this file we provide two different ways to extend a continuous linear map defined on a dense subspace to the entire Banach space.
ContinuousLinearMap.extend: Extend from a dense subspace usingIsUniformInducingContinuousLinearMap.extendOfNorm: Extend from a continuous linear map that is a dense injection into the domain and using a norm estimate.
noncomputable def
ContinuousLinearMap.extend
{๐ : Type u_1}
{๐โ : Type u_2}
{E : Type u_3}
{Eโ : Type u_4}
{F : Type u_5}
[AddCommGroup E]
[UniformSpace E]
[IsUniformAddGroup E]
[AddCommGroup F]
[UniformSpace F]
[IsUniformAddGroup F]
[T0Space F]
[AddCommMonoid Eโ]
[UniformSpace Eโ]
[ContinuousAdd Eโ]
[Semiring ๐]
[Semiring ๐โ]
[Module ๐ E]
[Module ๐โ F]
[Module ๐ Eโ]
[ContinuousConstSMul ๐ Eโ]
[ContinuousConstSMul ๐โ F]
{ฯโโ : ๐ โ+* ๐โ}
(f : E โSL[ฯโโ] F)
[CompleteSpace F]
(e : E โL[๐] Eโ)
(h_dense : DenseRange โe)
(h_e : IsUniformInducing โe)
:
Extension of a continuous linear map f : E โSL[ฯโโ] F, with E a normed space and F a
complete normed space, along a uniform and dense embedding e : E โL[๐] Eโ.
Equations
Instances For
@[simp]
theorem
ContinuousLinearMap.extend_eq
{๐ : Type u_1}
{๐โ : Type u_2}
{E : Type u_3}
{Eโ : Type u_4}
{F : Type u_5}
[AddCommGroup E]
[UniformSpace E]
[IsUniformAddGroup E]
[AddCommGroup F]
[UniformSpace F]
[IsUniformAddGroup F]
[T0Space F]
[AddCommMonoid Eโ]
[UniformSpace Eโ]
[ContinuousAdd Eโ]
[Semiring ๐]
[Semiring ๐โ]
[Module ๐ E]
[Module ๐โ F]
[Module ๐ Eโ]
[ContinuousConstSMul ๐ Eโ]
[ContinuousConstSMul ๐โ F]
{ฯโโ : ๐ โ+* ๐โ}
(f : E โSL[ฯโโ] F)
[CompleteSpace F]
(e : E โL[๐] Eโ)
(h_dense : DenseRange โe)
(h_e : IsUniformInducing โe)
(x : E)
:
theorem
ContinuousLinearMap.extend_unique
{๐ : Type u_1}
{๐โ : Type u_2}
{E : Type u_3}
{Eโ : Type u_4}
{F : Type u_5}
[AddCommGroup E]
[UniformSpace E]
[IsUniformAddGroup E]
[AddCommGroup F]
[UniformSpace F]
[IsUniformAddGroup F]
[T0Space F]
[AddCommMonoid Eโ]
[UniformSpace Eโ]
[ContinuousAdd Eโ]
[Semiring ๐]
[Semiring ๐โ]
[Module ๐ E]
[Module ๐โ F]
[Module ๐ Eโ]
[ContinuousConstSMul ๐ Eโ]
[ContinuousConstSMul ๐โ F]
{ฯโโ : ๐ โ+* ๐โ}
(f : E โSL[ฯโโ] F)
[CompleteSpace F]
(e : E โL[๐] Eโ)
(h_dense : DenseRange โe)
(h_e : IsUniformInducing โe)
(g : Eโ โSL[ฯโโ] F)
(H : g.comp e = f)
:
@[simp]
theorem
ContinuousLinearMap.extend_zero
{๐ : Type u_1}
{๐โ : Type u_2}
{E : Type u_3}
{Eโ : Type u_4}
{F : Type u_5}
[AddCommGroup E]
[UniformSpace E]
[IsUniformAddGroup E]
[AddCommGroup F]
[UniformSpace F]
[IsUniformAddGroup F]
[T0Space F]
[AddCommMonoid Eโ]
[UniformSpace Eโ]
[ContinuousAdd Eโ]
[Semiring ๐]
[Semiring ๐โ]
[Module ๐ E]
[Module ๐โ F]
[Module ๐ Eโ]
[ContinuousConstSMul ๐ Eโ]
[ContinuousConstSMul ๐โ F]
{ฯโโ : ๐ โ+* ๐โ}
[CompleteSpace F]
(e : E โL[๐] Eโ)
(h_dense : DenseRange โe)
(h_e : IsUniformInducing โe)
:
theorem
ContinuousLinearMap.opNorm_extend_le
{๐ : Type u_1}
{๐โ : Type u_2}
{E : Type u_3}
{Eโ : Type u_4}
{F : Type u_5}
[NontriviallyNormedField ๐]
[NontriviallyNormedField ๐โ]
{ฯโโ : ๐ โ+* ๐โ}
[NormedAddCommGroup E]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ Eโ]
[NormedSpace ๐โ F]
[CompleteSpace F]
(f : E โSL[ฯโโ] F)
(e : E โL[๐] Eโ)
(h_dense : DenseRange โe)
{N : NNReal}
(h_e : โ (x : E), โxโ โค โN * โe xโ)
[RingHomIsometric ฯโโ]
:
If a dense embedding e : E โL[๐] G expands the norm by a constant factor Nโปยน, then the
norm of the extension of f along e is bounded by N * โfโ.