Documentation

Mathlib.Analysis.NormedSpace.Star.ContinuousFunctionalCalculus.Restrict

Restriction of the continuous functional calculus to a scalar subring #

The main declaration in this file is:

This will allow us to take an instance of the ContinuousFunctionalCalculusIsStarNormal and produce both of the instances ContinuousFunctionalCalculusIsSelfAdjoint and ContinuousFunctionalCalculus ℝ≥0 (0 ≤ ·) simply by proving:

  1. IsSelfAdjoint x ↔ IsStarNormal x ∧ SpectrumRestricts Complex.re x,
  2. 0 ≤ x ↔ IsSelfAdjoint x ∧ SpectrumRestricts Real.toNNReal x.
theorem SpectrumRestricts.compactSpace {R : Type u_1} {S : Type u_2} {A : Type u_3} [CommSemiring R] [CommSemiring S] [Ring A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [TopologicalSpace R] [TopologicalSpace S] {a : A} (f : C(S, R)) (h : SpectrumRestricts a f) [h_cpct : CompactSpace (spectrum S a)] :
@[simp]
theorem SpectrumRestricts.starAlgHom_apply {R : Type u} {S : Type v} {A : Type w} [CommSemiring R] [StarRing R] [TopologicalSpace R] [TopologicalSemiring R] [ContinuousStar R] [CommSemiring S] [StarRing S] [TopologicalSpace S] [TopologicalSemiring S] [ContinuousStar S] [Ring A] [StarRing A] [Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [StarModule R S] [ContinuousSMul R S] {a : A} (φ : C((spectrum S a), S) →⋆ₐ[S] A) {f : C(S, R)} (h : SpectrumRestricts a f) :
∀ (a_1 : C((spectrum R a), R)), (SpectrumRestricts.starAlgHom φ h) a_1 = φ ({ toFun := (StarAlgHom.ofId R S), continuous_toFun := }.comp (a_1.comp { toFun := Subtype.map f , continuous_toFun := }))

If the spectrum of an element restricts to a smaller scalar ring, then a continuous functional calculus over the larger scalar ring descends to the smaller one.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem SpectrumRestricts.cfc {R : Type u_1} {S : Type u_2} {A : Type u_3} {p : AProp} {q : AProp} [CommSemiring R] [StarRing R] [MetricSpace R] [TopologicalSemiring R] [ContinuousStar R] [CommSemiring S] [StarRing S] [MetricSpace S] [TopologicalSemiring S] [ContinuousStar S] [TopologicalSpace A] [Ring A] [StarRing A] [Algebra S A] [ContinuousFunctionalCalculus S q] [Algebra R S] [Algebra R A] [IsScalarTower R S A] [StarModule R S] [ContinuousSMul R S] [CompleteSpace R] (f : C(S, R)) (h_isom : Isometry (algebraMap R S)) (h : ∀ (a : A), p a q a SpectrumRestricts a f) (h_cpct : ∀ (a : A), q aCompactSpace (spectrum S a)) :

    Given a ContinuousFunctionalCalculus S q. If we form the predicate p for a : A characterized by: q a and the spectrum of a restricts to the scalar subring R via f : C(S, R), then we can get a restricted functional calculus ContinuousFunctionalCalculus R p.

    theorem SpectrumRestricts.cfc_eq_restrict {R : Type u_1} {S : Type u_2} {A : Type u_3} {p : AProp} {q : AProp} [CommSemiring R] [StarRing R] [MetricSpace R] [TopologicalSemiring R] [ContinuousStar R] [CommSemiring S] [StarRing S] [MetricSpace S] [TopologicalSemiring S] [ContinuousStar S] [TopologicalSpace A] [Ring A] [StarRing A] [Algebra S A] [ContinuousFunctionalCalculus S q] [Algebra R S] [Algebra R A] [IsScalarTower R S A] [StarModule R S] [ContinuousSMul R S] [CompleteSpace R] [ContinuousFunctionalCalculus R p] [UniqueContinuousFunctionalCalculus R A] (f : C(S, R)) (h_isom : Isometry (algebraMap R S)) {a : A} (hpa : p a) (hqa : q a) (h : SpectrumRestricts a f) [CompactSpace (spectrum S a)] (g : RR) :
    cfc g a = cfc (fun (x : S) => (algebraMap R S) (g (f x))) a