Documentation

Mathlib.Analysis.NormedSpace.TrivSqZeroExt

Results on TrivSqZeroExt R M related to the norm #

For now, this file contains results about exp for this type.

Main results #

TODO #

theorem TrivSqZeroExt.hasSum_fst_expSeries (๐•œ : Type u_1) {R : Type u_2} {M : Type u_3} [TopologicalSpace R] [TopologicalSpace M] [Field ๐•œ] [Ring R] [AddCommGroup M] [Algebra ๐•œ R] [Module R M] [Module Rแตแต’แต– M] [SMulCommClass R Rแตแต’แต– M] [Module ๐•œ M] [IsScalarTower ๐•œ R M] [IsScalarTower ๐•œ Rแตแต’แต– M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rแตแต’แต– M] (x : TrivSqZeroExt R M) {e : R} (h : HasSum (fun n => โ†‘(expSeries ๐•œ R n) fun x => TrivSqZeroExt.fst x) e) :
HasSum (fun n => TrivSqZeroExt.fst (โ†‘(expSeries ๐•œ (TrivSqZeroExt R M) n) fun x => x)) e

If exp R x.fst converges to e then (exp R x).fst converges to e.

If exp R x.fst converges to e then (exp R x).snd converges to e โ€ข x.snd.

If exp R x.fst converges to e then exp R x converges to inl e + inr (e โ€ข x.snd).

@[simp]
theorem TrivSqZeroExt.exp_def (๐•œ : Type u_1) {R : Type u_2} {M : Type u_3} [IsROrC ๐•œ] [NormedCommRing R] [AddCommGroup M] [NormedAlgebra ๐•œ R] [Module R M] [Module Rแตแต’แต– M] [IsCentralScalar R M] [Module ๐•œ M] [IsScalarTower ๐•œ R M] [TopologicalSpace M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [CompleteSpace R] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) :
@[simp]
theorem TrivSqZeroExt.fst_exp (๐•œ : Type u_1) {R : Type u_2} {M : Type u_3} [IsROrC ๐•œ] [NormedCommRing R] [AddCommGroup M] [NormedAlgebra ๐•œ R] [Module R M] [Module Rแตแต’แต– M] [IsCentralScalar R M] [Module ๐•œ M] [IsScalarTower ๐•œ R M] [TopologicalSpace M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [CompleteSpace R] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) :
TrivSqZeroExt.fst (exp ๐•œ x) = exp ๐•œ (TrivSqZeroExt.fst x)
@[simp]
theorem TrivSqZeroExt.snd_exp (๐•œ : Type u_1) {R : Type u_2} {M : Type u_3} [IsROrC ๐•œ] [NormedCommRing R] [AddCommGroup M] [NormedAlgebra ๐•œ R] [Module R M] [Module Rแตแต’แต– M] [IsCentralScalar R M] [Module ๐•œ M] [IsScalarTower ๐•œ R M] [TopologicalSpace M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [CompleteSpace R] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) :

Polar form of trivial-square-zero extension.