Results on TrivSqZeroExt R M
related to the norm #
For now, this file contains results about exp
for this type.
Main results #
TODO #
- Actually define a sensible norm on
TrivSqZeroExt R M
, so that we have access to lemmas likeexp_add
. - Generalize more of these results to non-commutative
R
. In principle, under sufficient conditions we should expect(exp ๐ x).snd = โซ t in 0..1, exp ๐ (t โข x.fst) โข op (exp ๐ ((1 - t) โข x.fst)) โข x.snd
(Physics.SE, and https://link.springer.com/chapter/10.1007/978-3-540-44953-9_2).
theorem
TrivSqZeroExt.hasSum_fst_expSeries
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[TopologicalSpace R]
[TopologicalSpace M]
[Field ๐]
[Ring R]
[AddCommGroup M]
[Algebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
(x : TrivSqZeroExt R M)
{e : R}
(h : HasSum (fun n => โ(expSeries ๐ R n) fun x => TrivSqZeroExt.fst x) e)
:
HasSum (fun n => TrivSqZeroExt.fst (โ(expSeries ๐ (TrivSqZeroExt R M) n) fun x => x)) e
If exp R x.fst
converges to e
then (exp R x).fst
converges to e
.
theorem
TrivSqZeroExt.hasSum_snd_expSeries_of_smul_comm
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[TopologicalSpace R]
[TopologicalSpace M]
[Field ๐]
[CharZero ๐]
[Ring R]
[AddCommGroup M]
[Algebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
(x : TrivSqZeroExt R M)
(hx : MulOpposite.op (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x = TrivSqZeroExt.fst x โข TrivSqZeroExt.snd x)
{e : R}
(h : HasSum (fun n => โ(expSeries ๐ R n) fun x => TrivSqZeroExt.fst x) e)
:
HasSum (fun n => TrivSqZeroExt.snd (โ(expSeries ๐ (TrivSqZeroExt R M) n) fun x => x)) (e โข TrivSqZeroExt.snd x)
If exp R x.fst
converges to e
then (exp R x).snd
converges to e โข x.snd
.
theorem
TrivSqZeroExt.hasSum_expSeries_of_smul_comm
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[TopologicalSpace R]
[TopologicalSpace M]
[Field ๐]
[CharZero ๐]
[Ring R]
[AddCommGroup M]
[Algebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
(x : TrivSqZeroExt R M)
(hx : MulOpposite.op (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x = TrivSqZeroExt.fst x โข TrivSqZeroExt.snd x)
{e : R}
(h : HasSum (fun n => โ(expSeries ๐ R n) fun x => TrivSqZeroExt.fst x) e)
:
HasSum (fun n => โ(expSeries ๐ (TrivSqZeroExt R M) n) fun x => x)
(TrivSqZeroExt.inl e + TrivSqZeroExt.inr (e โข TrivSqZeroExt.snd x))
If exp R x.fst
converges to e
then exp R x
converges to inl e + inr (e โข x.snd)
.
theorem
TrivSqZeroExt.exp_def_of_smul_comm
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
(hx : MulOpposite.op (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x = TrivSqZeroExt.fst x โข TrivSqZeroExt.snd x)
:
exp ๐ x = TrivSqZeroExt.inl (exp ๐ (TrivSqZeroExt.fst x)) + TrivSqZeroExt.inr (exp ๐ (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x)
@[simp]
theorem
TrivSqZeroExt.exp_inl
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : R)
:
exp ๐ (TrivSqZeroExt.inl x) = TrivSqZeroExt.inl (exp ๐ x)
@[simp]
theorem
TrivSqZeroExt.exp_inr
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[SMulCommClass R Rแตแตแต M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[IsScalarTower ๐ Rแตแตแต M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[ContinuousSMul Rแตแตแต M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(m : M)
:
exp ๐ (TrivSqZeroExt.inr m) = 1 + TrivSqZeroExt.inr m
theorem
TrivSqZeroExt.exp_def
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedCommRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[IsCentralScalar R M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
:
exp ๐ x = TrivSqZeroExt.inl (exp ๐ (TrivSqZeroExt.fst x)) + TrivSqZeroExt.inr (exp ๐ (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x)
@[simp]
theorem
TrivSqZeroExt.fst_exp
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedCommRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[IsCentralScalar R M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
:
TrivSqZeroExt.fst (exp ๐ x) = exp ๐ (TrivSqZeroExt.fst x)
@[simp]
theorem
TrivSqZeroExt.snd_exp
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedCommRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[IsCentralScalar R M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
:
TrivSqZeroExt.snd (exp ๐ x) = exp ๐ (TrivSqZeroExt.fst x) โข TrivSqZeroExt.snd x
theorem
TrivSqZeroExt.eq_smul_exp_of_invertible
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedCommRing R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[IsCentralScalar R M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
[Invertible (TrivSqZeroExt.fst x)]
:
x = TrivSqZeroExt.fst x โข exp ๐ (โ
(TrivSqZeroExt.fst x) โข TrivSqZeroExt.inr (TrivSqZeroExt.snd x))
Polar form of trivial-square-zero extension.
theorem
TrivSqZeroExt.eq_smul_exp_of_ne_zero
(๐ : Type u_1)
{R : Type u_2}
{M : Type u_3}
[IsROrC ๐]
[NormedField R]
[AddCommGroup M]
[NormedAlgebra ๐ R]
[Module R M]
[Module Rแตแตแต M]
[IsCentralScalar R M]
[Module ๐ M]
[IsScalarTower ๐ R M]
[TopologicalSpace M]
[TopologicalRing R]
[TopologicalAddGroup M]
[ContinuousSMul R M]
[CompleteSpace R]
[T2Space R]
[T2Space M]
(x : TrivSqZeroExt R M)
(hx : TrivSqZeroExt.fst x โ 0)
:
x = TrivSqZeroExt.fst x โข exp ๐ ((TrivSqZeroExt.fst x)โปยน โข TrivSqZeroExt.inr (TrivSqZeroExt.snd x))
More convenient version of TrivSqZeroExt.eq_smul_exp_of_invertible
for when R
is a
field.