Documentation

Mathlib.Analysis.NormedSpace.lpSpace

ℓp space #

This file describes properties of elements f of a pi-type ∀ i, E i with finite "norm", defined for p:ℝ≥0∞ as the size of the support of f if p=0, (∑' a, ‖f a‖^p) ^ (1/p) for 0 < p < ∞ and ⨆ a, ‖f a‖ for p=∞.

The Prop-valued Memℓp f p states that a function f : ∀ i, E i has finite norm according to the above definition; that is, f has finite support if p = 0, Summable (fun a ↦ ‖f a‖^p) if 0 < p < ∞, and BddAbove (norm '' (Set.range f)) if p = ∞.

The space lp E p is the subtype of elements of ∀ i : α, E i which satisfy Memℓp f p. For 1 ≤ p, the "norm" is genuinely a norm and lp is a complete metric space.

Main definitions #

Main results #

Implementation #

Since lp is defined as an AddSubgroup, dot notation does not work. Use lp.norm_neg f to say that ‖-f‖ = ‖f‖, instead of the non-working f.norm_neg.

TODO #

Memℓp predicate #

def Memℓp {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] (f : (i : α) → E i) (p : ENNReal) :

The property that f : ∀ i : α, E i

  • is finitely supported, if p = 0, or
  • admits an upper bound for Set.range (fun i ↦ ‖f i‖), if p = ∞, or
  • has the series ∑' i, ‖f i‖ ^ p be summable, if 0 < p < ∞.
Instances For
    theorem memℓp_zero_iff {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    Memℓp f 0 Set.Finite {i | f i 0}
    theorem memℓp_zero {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Set.Finite {i | f i 0}) :
    theorem memℓp_infty_iff {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    theorem memℓp_infty {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : BddAbove (Set.range fun i => f i)) :
    theorem memℓp_gen_iff {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) {f : (i : α) → E i} :
    theorem memℓp_gen {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Summable fun i => f i ^ ENNReal.toReal p) :
    theorem memℓp_gen' {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {C : } {f : (i : α) → E i} (hf : ∀ (s : Finset α), (Finset.sum s fun i => f i ^ ENNReal.toReal p) C) :
    theorem zero_memℓp {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
    theorem zero_mem_ℓp' {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
    Memℓp (fun i => 0) p
    theorem Memℓp.finite_dsupport {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f 0) :
    Set.Finite {i | f i 0}
    theorem Memℓp.bddAbove {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f ) :
    BddAbove (Set.range fun i => f i)
    theorem Memℓp.summable {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) {f : (i : α) → E i} (hf : Memℓp f p) :
    theorem Memℓp.neg {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f p) :
    Memℓp (-f) p
    @[simp]
    theorem Memℓp.neg_iff {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} :
    Memℓp (-f) p Memℓp f p
    theorem Memℓp.of_exponent_ge {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {p : ENNReal} {q : ENNReal} {f : (i : α) → E i} (hfq : Memℓp f q) (hpq : q p) :
    theorem Memℓp.add {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} {g : (i : α) → E i} (hf : Memℓp f p) (hg : Memℓp g p) :
    Memℓp (f + g) p
    theorem Memℓp.sub {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : (i : α) → E i} {g : (i : α) → E i} (hf : Memℓp f p) (hg : Memℓp g p) :
    Memℓp (f - g) p
    theorem Memℓp.finset_sum {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} (s : Finset ι) {f : ι(i : α) → E i} (hf : ∀ (i : ι), i sMemℓp (f i) p) :
    Memℓp (fun a => Finset.sum s fun i => f i a) p
    theorem Memℓp.const_smul {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] {f : (i : α) → E i} (hf : Memℓp f p) (c : 𝕜) :
    Memℓp (c f) p
    theorem Memℓp.const_mul {α : Type u_1} {p : ENNReal} {𝕜 : Type u_3} [NormedRing 𝕜] {f : α𝕜} (hf : Memℓp f p) (c : 𝕜) :
    Memℓp (fun x => c * f x) p

    lp space #

    The space of elements of ∀ i, E i satisfying the predicate Memℓp.

    def PreLp {α : Type u_1} (E : αType u_3) [(i : α) → NormedAddCommGroup (E i)] :
    Type (max u_1 u_3)

    We define PreLp E to be a type synonym for ∀ i, E i which, importantly, does not inherit the pi topology on ∀ i, E i (otherwise this topology would descend to lp E p and conflict with the normed group topology we will later equip it with.)

    We choose to deal with this issue by making a type synonym for ∀ i, E i rather than for the lp subgroup itself, because this allows all the spaces lp E p (for varying p) to be subgroups of the same ambient group, which permits lemma statements like lp.monotone (below).

    Instances For
      instance instAddCommGroupPreLp {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] :
      instance PreLp.unique {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [IsEmpty α] :
      def lp {α : Type u_1} (E : αType u_3) [(i : α) → NormedAddCommGroup (E i)] (p : ENNReal) :

      lp space

      Instances For
        instance lp.coeFun {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
        CoeFun { x // x lp E p } fun x => (i : α) → E i
        theorem lp.ext {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : { x // x lp E p }} {g : { x // x lp E p }} (h : f = g) :
        f = g
        theorem lp.ext_iff {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : { x // x lp E p }} {g : { x // x lp E p }} :
        f = g f = g
        theorem lp.eq_zero' {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [IsEmpty α] (f : { x // x lp E p }) :
        f = 0
        theorem lp.monotone {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {p : ENNReal} {q : ENNReal} (hpq : q p) :
        lp E q lp E p
        theorem lp.memℓp {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E p }) :
        Memℓp (f) p
        @[simp]
        theorem lp.coeFn_zero {α : Type u_1} (E : αType u_2) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] :
        0 = 0
        @[simp]
        theorem lp.coeFn_neg {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E p }) :
        ↑(-f) = -f
        @[simp]
        theorem lp.coeFn_add {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E p }) (g : { x // x lp E p }) :
        ↑(f + g) = f + g
        theorem lp.coeFn_sum {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} (f : ι{ x // x lp E p }) (s : Finset ι) :
        ↑(Finset.sum s fun i => f i) = Finset.sum s fun i => ↑(f i)
        @[simp]
        theorem lp.coeFn_sub {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E p }) (g : { x // x lp E p }) :
        ↑(f - g) = f - g
        theorem lp.norm_eq_card_dsupport {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E 0 }) :
        f = ↑(Finset.card (Set.Finite.toFinset (_ : Set.Finite {i | f i 0})))
        theorem lp.norm_eq_ciSup {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E }) :
        f = ⨆ (i : α), f i
        theorem lp.isLUB_norm {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [Nonempty α] (f : { x // x lp E }) :
        IsLUB (Set.range fun i => f i) f
        theorem lp.norm_eq_tsum_rpow {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) :
        f = (∑' (i : α), f i ^ ENNReal.toReal p) ^ (1 / ENNReal.toReal p)
        theorem lp.norm_rpow_eq_tsum {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) :
        f ^ ENNReal.toReal p = ∑' (i : α), f i ^ ENNReal.toReal p
        theorem lp.hasSum_norm {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) :
        theorem lp.norm_nonneg' {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (f : { x // x lp E p }) :
        @[simp]
        theorem lp.norm_zero {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] :
        theorem lp.norm_eq_zero_iff {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : { x // x lp E p }} :
        f = 0 f = 0
        theorem lp.eq_zero_iff_coeFn_eq_zero {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {f : { x // x lp E p }} :
        f = 0 f = 0
        @[simp]
        theorem lp.norm_neg {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] ⦃f : { x // x lp E p } :
        instance lp.normedAddCommGroup {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [hp : Fact (1 p)] :
        NormedAddCommGroup { x // x lp E p }
        theorem lp.tsum_mul_le_mul_norm {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {p : ENNReal} {q : ENNReal} (hpq : Real.IsConjugateExponent (ENNReal.toReal p) (ENNReal.toReal q)) (f : { x // x lp E p }) (g : { x // x lp E q }) :
        (Summable fun i => f i * g i) ∑' (i : α), f i * g i f * g

        Hölder inequality

        theorem lp.summable_mul {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {p : ENNReal} {q : ENNReal} (hpq : Real.IsConjugateExponent (ENNReal.toReal p) (ENNReal.toReal q)) (f : { x // x lp E p }) (g : { x // x lp E q }) :
        Summable fun i => f i * g i
        theorem lp.tsum_mul_le_mul_norm' {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {p : ENNReal} {q : ENNReal} (hpq : Real.IsConjugateExponent (ENNReal.toReal p) (ENNReal.toReal q)) (f : { x // x lp E p }) (g : { x // x lp E q }) :
        ∑' (i : α), f i * g i f * g
        theorem lp.norm_apply_le_norm {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : p 0) (f : { x // x lp E p }) (i : α) :
        theorem lp.sum_rpow_le_norm_rpow {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) (s : Finset α) :
        theorem lp.norm_le_of_forall_le' {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [Nonempty α] {f : { x // x lp E }} (C : ) (hCf : ∀ (i : α), f i C) :
        theorem lp.norm_le_of_forall_le {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {f : { x // x lp E }} {C : } (hC : 0 C) (hCf : ∀ (i : α), f i C) :
        theorem lp.norm_le_of_tsum_le {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) {C : } (hC : 0 C) {f : { x // x lp E p }} (hf : ∑' (i : α), f i ^ ENNReal.toReal p C ^ ENNReal.toReal p) :
        theorem lp.norm_le_of_forall_sum_le {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] (hp : 0 < ENNReal.toReal p) {C : } (hC : 0 C) {f : { x // x lp E p }} (hf : ∀ (s : Finset α), (Finset.sum s fun i => f i ^ ENNReal.toReal p) C ^ ENNReal.toReal p) :
        instance lp.instModulePreLpToSemiringToRingToAddCommMonoidInstAddCommGroupPreLp {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] :
        Module 𝕜 (PreLp E)
        theorem lp.mem_lp_const_smul {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (c : 𝕜) (f : { x // x lp E p }) :
        c f lp E p
        def lpSubmodule {α : Type u_1} (E : αType u_2) (p : ENNReal) [(i : α) → NormedAddCommGroup (E i)] (𝕜 : Type u_3) [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
        Submodule 𝕜 (PreLp E)

        The 𝕜-submodule of elements of ∀ i : α, E i whose lp norm is finite. This is lp E p, with extra structure.

        Instances For
          theorem lp.coe_lpSubmodule {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
          instance lp.instModuleSubtypePreLpMemAddSubgroupToAddGroupInstAddCommGroupPreLpInstMembershipInstSetLikeAddSubgroupLpToSemiringToRingToAddCommMonoidToAddCommMonoidToAddSubmonoid {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] :
          Module 𝕜 { x // x lp E p }
          @[simp]
          theorem lp.coeFn_smul {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (c : 𝕜) (f : { x // x lp E p }) :
          ↑(c f) = c f
          theorem lp.norm_const_smul_le {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (hp : p 0) (c : 𝕜) (f : { x // x lp E p }) :
          theorem lp.norm_const_smul {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedDivisionRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] (hp : p 0) {c : 𝕜} (f : { x // x lp E p }) :
          instance lp.instNormedSpace {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedField 𝕜] [(i : α) → NormedSpace 𝕜 (E i)] [Fact (1 p)] :
          NormedSpace 𝕜 { x // x lp E p }
          theorem Memℓp.star_mem {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] {f : (i : α) → E i} (hf : Memℓp f p) :
          @[simp]
          theorem Memℓp.star_iff {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] {f : (i : α) → E i} :
          instance lp.instStarSubtypePreLpMemAddSubgroupToAddGroupInstAddCommGroupPreLpInstMembershipInstSetLikeAddSubgroupLp {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
          Star { x // x lp E p }
          @[simp]
          theorem lp.coeFn_star {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] (f : { x // x lp E p }) :
          ↑(star f) = star f
          @[simp]
          theorem lp.star_apply {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] (f : { x // x lp E p }) (i : α) :
          ↑(star f) i = star (f i)
          instance lp.instInvolutiveStar {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
          InvolutiveStar { x // x lp E p }
          instance lp.instStarAddMonoid {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [(i : α) → StarAddMonoid (E i)] [∀ (i : α), NormedStarGroup (E i)] :
          StarAddMonoid { x // x lp E p }
          theorem Memℓp.infty_mul {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] {f : (i : I) → B i} {g : (i : I) → B i} (hf : Memℓp f ) (hg : Memℓp g ) :
          Memℓp (f * g)
          @[simp]
          theorem lp.infty_coeFn_mul {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] (f : { x // x lp B }) (g : { x // x lp B }) :
          ↑(f * g) = f * g
          instance lp.nonUnitalRing {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] :
          NonUnitalRing { x // x lp B }
          instance lp.nonUnitalNormedRing {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] :
          instance lp.infty_isScalarTower {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] {𝕜 : Type u_5} [NormedRing 𝕜] [(i : I) → Module 𝕜 (B i)] [∀ (i : I), BoundedSMul 𝕜 (B i)] [∀ (i : I), IsScalarTower 𝕜 (B i) (B i)] :
          IsScalarTower 𝕜 { x // x lp B } { x // x lp B }
          instance lp.infty_smulCommClass {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] {𝕜 : Type u_5} [NormedRing 𝕜] [(i : I) → Module 𝕜 (B i)] [∀ (i : I), BoundedSMul 𝕜 (B i)] [∀ (i : I), SMulCommClass 𝕜 (B i) (B i)] :
          SMulCommClass 𝕜 { x // x lp B } { x // x lp B }
          instance lp.inftyStarRing {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] [(i : I) → StarRing (B i)] [∀ (i : I), NormedStarGroup (B i)] :
          StarRing { x // x lp B }
          instance lp.inftyCstarRing {I : Type u_3} {B : IType u_4} [(i : I) → NonUnitalNormedRing (B i)] [(i : I) → StarRing (B i)] [∀ (i : I), NormedStarGroup (B i)] [∀ (i : I), CstarRing (B i)] :
          CstarRing { x // x lp B }
          instance PreLp.ring {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] :
          theorem one_memℓp_infty {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
          def lpInftySubring {I : Type u_3} (B : IType u_4) [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :

          The 𝕜-subring of elements of ∀ i : α, B i whose lp norm is finite. This is lp E ∞, with extra structure.

          Instances For
            instance lp.inftyRing {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
            Ring { x // x lp B }
            theorem Memℓp.infty_pow {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] {f : (i : I) → B i} (hf : Memℓp f ) (n : ) :
            Memℓp (f ^ n)
            theorem nat_cast_memℓp_infty {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (n : ) :
            theorem int_cast_memℓp_infty {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (z : ) :
            @[simp]
            theorem lp.infty_coeFn_one {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
            1 = 1
            @[simp]
            theorem lp.infty_coeFn_pow {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (f : { x // x lp B }) (n : ) :
            ↑(f ^ n) = f ^ n
            @[simp]
            theorem lp.infty_coeFn_nat_cast {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (n : ) :
            n = n
            @[simp]
            theorem lp.infty_coeFn_int_cast {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] (z : ) :
            z = z
            instance lp.inftyNormedRing {I : Type u_3} {B : IType u_4} [(i : I) → NormedRing (B i)] [∀ (i : I), NormOneClass (B i)] :
            NormedRing { x // x lp B }
            instance lp.inftyCommRing {I : Type u_3} {B : IType u_4} [(i : I) → NormedCommRing (B i)] [∀ (i : I), NormOneClass (B i)] :
            CommRing { x // x lp B }
            instance lp.inftyNormedCommRing {I : Type u_3} {B : IType u_4} [(i : I) → NormedCommRing (B i)] [∀ (i : I), NormOneClass (B i)] :
            NormedCommRing { x // x lp B }
            instance Pi.algebraOfNormedAlgebra {I : Type u_3} {𝕜 : Type u_4} {B : IType u_5} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] :
            Algebra 𝕜 ((i : I) → B i)

            A variant of Pi.algebra that lean can't find otherwise.

            instance PreLp.algebra {I : Type u_3} {𝕜 : Type u_4} {B : IType u_5} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] :
            Algebra 𝕜 (PreLp B)
            theorem algebraMap_memℓp_infty {I : Type u_3} {𝕜 : Type u_4} {B : IType u_5} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] (k : 𝕜) :
            Memℓp (↑(algebraMap 𝕜 ((i : I) → B i)) k)
            def lpInftySubalgebra {I : Type u_3} (𝕜 : Type u_4) (B : IType u_5) [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] :
            Subalgebra 𝕜 (PreLp B)

            The 𝕜-subalgebra of elements of ∀ i : α, B i whose lp norm is finite. This is lp E ∞, with extra structure.

            Instances For
              instance lp.inftyNormedAlgebra {I : Type u_3} {𝕜 : Type u_4} {B : IType u_5} [NormedField 𝕜] [(i : I) → NormedRing (B i)] [(i : I) → NormedAlgebra 𝕜 (B i)] [∀ (i : I), NormOneClass (B i)] :
              NormedAlgebra 𝕜 { x // x lp B }
              def lp.single {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
              { x // x lp E p }

              The element of lp E p which is a : E i at the index i, and zero elsewhere.

              Instances For
                theorem lp.single_apply {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) (j : α) :
                ↑(lp.single p i a) j = if h : j = i then (_ : i = j)a else 0
                theorem lp.single_apply_self {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                ↑(lp.single p i a) i = a
                theorem lp.single_apply_ne {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) {j : α} (hij : j i) :
                ↑(lp.single p i a) j = 0
                @[simp]
                theorem lp.single_neg {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) :
                lp.single p i (-a) = -lp.single p i a
                @[simp]
                theorem lp.single_smul {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {𝕜 : Type u_3} [NormedRing 𝕜] [(i : α) → Module 𝕜 (E i)] [∀ (i : α), BoundedSMul 𝕜 (E i)] [DecidableEq α] (p : ENNReal) (i : α) (a : E i) (c : 𝕜) :
                lp.single p i (c a) = c lp.single p i a
                theorem lp.norm_sum_single {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < ENNReal.toReal p) (f : (i : α) → E i) (s : Finset α) :
                theorem lp.norm_single {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < ENNReal.toReal p) (f : (i : α) → E i) (i : α) :
                lp.single p i (f i) = f i
                theorem lp.norm_sub_norm_compl_sub_single {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) (s : Finset α) :
                theorem lp.norm_compl_sum_single {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] (hp : 0 < ENNReal.toReal p) (f : { x // x lp E p }) (s : Finset α) :
                theorem lp.hasSum_single {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [DecidableEq α] [Fact (1 p)] (hp : p ) (f : { x // x lp E p }) :
                HasSum (fun i => lp.single p i (f i)) f

                The canonical finitely-supported approximations to an element f of lp converge to it, in the lp topology.

                theorem lp.uniformContinuous_coe {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] :
                UniformContinuous Subtype.val

                The coercion from lp E p to ∀ i, E i is uniformly continuous.

                theorem lp.norm_apply_le_of_tendsto {α : Type u_1} {E : αType u_2} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} {l : Filter ι} [Filter.NeBot l] {C : } {F : ι{ x // x lp E }} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun i => ↑(F i)) l (nhds f)) (a : α) :
                f a C
                theorem lp.sum_rpow_le_of_tendsto {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} {l : Filter ι} [Filter.NeBot l] [_i : Fact (1 p)] (hp : p ) {C : } {F : ι{ x // x lp E p }} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun i => ↑(F i)) l (nhds f)) (s : Finset α) :
                theorem lp.norm_le_of_tendsto {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} {l : Filter ι} [Filter.NeBot l] [_i : Fact (1 p)] {C : } {F : ι{ x // x lp E p }} (hCF : ∀ᶠ (k : ι) in l, F k C) {f : { x // x lp E p }} (hf : Filter.Tendsto (id fun i => ↑(F i)) l (nhds f)) :

                "Semicontinuity of the lp norm": If all sufficiently large elements of a sequence in lp E p have lp norm ≤ C, then the pointwise limit, if it exists, also has lp norm ≤ C.

                theorem lp.memℓp_of_tendsto {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] {ι : Type u_3} {l : Filter ι} [Filter.NeBot l] [_i : Fact (1 p)] {F : ι{ x // x lp E p }} (hF : Bornology.IsBounded (Set.range F)) {f : (a : α) → E a} (hf : Filter.Tendsto (id fun i => ↑(F i)) l (nhds f)) :

                If f is the pointwise limit of a bounded sequence in lp E p, then f is in lp E p.

                theorem lp.tendsto_lp_of_tendsto_pi {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] {F : { x // x lp E p }} (hF : CauchySeq F) {f : { x // x lp E p }} (hf : Filter.Tendsto (id fun i => ↑(F i)) Filter.atTop (nhds f)) :
                Filter.Tendsto F Filter.atTop (nhds f)

                If a sequence is Cauchy in the lp E p topology and pointwise convergent to an element f of lp E p, then it converges to f in the lp E p topology.

                instance lp.completeSpace {α : Type u_1} {E : αType u_2} {p : ENNReal} [(i : α) → NormedAddCommGroup (E i)] [_i : Fact (1 p)] [∀ (a : α), CompleteSpace (E a)] :
                CompleteSpace { x // x lp E p }
                theorem LipschitzWith.uniformly_bounded {α : Type u_1} {ι : Type u_3} [PseudoMetricSpace α] (g : αι) {K : NNReal} (hg : ∀ (i : ι), LipschitzWith K fun x => g x i) (a₀ : α) (hga₀b : Memℓp (g a₀) ) (a : α) :
                Memℓp (g a)
                theorem LipschitzOnWith.coordinate {α : Type u_1} {ι : Type u_3} [PseudoMetricSpace α] (f : α{ x // x lp (fun i => ) }) (s : Set α) (K : NNReal) :
                LipschitzOnWith K f s ∀ (i : ι), LipschitzOnWith K (fun a => ↑(f a) i) s
                theorem LipschitzWith.coordinate {α : Type u_1} {ι : Type u_3} [PseudoMetricSpace α] {f : α{ x // x lp (fun i => ) }} (K : NNReal) :
                LipschitzWith K f ∀ (i : ι), LipschitzWith K fun a => ↑(f a) i