Continuity of power functions #
This file contains lemmas about continuity of the power functions on ℂ
, ℝ
, ℝ≥0
, and ℝ≥0∞
.
Continuity for complex powers #
theorem
cpow_eq_nhds
{a b : ℂ}
(ha : a ≠ 0)
:
(fun (x : ℂ) => x ^ b) =ᶠ[nhds a] fun (x : ℂ) => Complex.exp (Complex.log x * b)
theorem
continuousAt_cpow
{p : ℂ × ℂ}
(hp_fst : p.1 ∈ Complex.slitPlane)
:
ContinuousAt (fun (x : ℂ × ℂ) => x.1 ^ x.2) p
The function z ^ w
is continuous in (z, w)
provided that z
does not belong to the interval
(-∞, 0]
on the real line. See also Complex.continuousAt_cpow_zero_of_re_pos
for a version that
works for z = 0
but assumes 0 < re w
.
theorem
continuousAt_cpow_const
{a b : ℂ}
(ha : a ∈ Complex.slitPlane)
:
ContinuousAt (fun (x : ℂ) => x ^ b) a
theorem
Filter.Tendsto.cpow
{α : Type u_1}
{l : Filter α}
{f g : α → ℂ}
{a b : ℂ}
(hf : Filter.Tendsto f l (nhds a))
(hg : Filter.Tendsto g l (nhds b))
(ha : a ∈ Complex.slitPlane)
:
Filter.Tendsto (fun (x : α) => f x ^ g x) l (nhds (a ^ b))
theorem
Filter.Tendsto.const_cpow
{α : Type u_1}
{l : Filter α}
{f : α → ℂ}
{a b : ℂ}
(hf : Filter.Tendsto f l (nhds b))
(h : a ≠ 0 ∨ b ≠ 0)
:
Filter.Tendsto (fun (x : α) => a ^ f x) l (nhds (a ^ b))
theorem
ContinuousWithinAt.cpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℂ}
{s : Set α}
{a : α}
(hf : ContinuousWithinAt f s a)
(hg : ContinuousWithinAt g s a)
(h0 : f a ∈ Complex.slitPlane)
:
ContinuousWithinAt (fun (x : α) => f x ^ g x) s a
theorem
ContinuousWithinAt.const_cpow
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{s : Set α}
{a : α}
{b : ℂ}
(hf : ContinuousWithinAt f s a)
(h : b ≠ 0 ∨ f a ≠ 0)
:
ContinuousWithinAt (fun (x : α) => b ^ f x) s a
theorem
ContinuousAt.cpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℂ}
{a : α}
(hf : ContinuousAt f a)
(hg : ContinuousAt g a)
(h0 : f a ∈ Complex.slitPlane)
:
ContinuousAt (fun (x : α) => f x ^ g x) a
theorem
ContinuousAt.const_cpow
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{a : α}
{b : ℂ}
(hf : ContinuousAt f a)
(h : b ≠ 0 ∨ f a ≠ 0)
:
ContinuousAt (fun (x : α) => b ^ f x) a
theorem
ContinuousOn.cpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℂ}
{s : Set α}
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
(h0 : ∀ a ∈ s, f a ∈ Complex.slitPlane)
:
ContinuousOn (fun (x : α) => f x ^ g x) s
theorem
ContinuousOn.const_cpow
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{s : Set α}
{b : ℂ}
(hf : ContinuousOn f s)
(h : b ≠ 0 ∨ ∀ a ∈ s, f a ≠ 0)
:
ContinuousOn (fun (x : α) => b ^ f x) s
theorem
Continuous.cpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℂ}
(hf : Continuous f)
(hg : Continuous g)
(h0 : ∀ (a : α), f a ∈ Complex.slitPlane)
:
Continuous fun (x : α) => f x ^ g x
theorem
Continuous.const_cpow
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{b : ℂ}
(hf : Continuous f)
(h : b ≠ 0 ∨ ∀ (a : α), f a ≠ 0)
:
Continuous fun (x : α) => b ^ f x
theorem
ContinuousOn.cpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{s : Set α}
{b : ℂ}
(hf : ContinuousOn f s)
(h : ∀ a ∈ s, f a ∈ Complex.slitPlane)
:
ContinuousOn (fun (x : α) => f x ^ b) s
Continuity for real powers #
theorem
Real.continuousAt_rpow_const
(x q : ℝ)
(h : x ≠ 0 ∨ 0 ≤ q)
:
ContinuousAt (fun (x : ℝ) => x ^ q) x
theorem
Filter.Tendsto.rpow
{α : Type u_1}
{l : Filter α}
{f g : α → ℝ}
{x y : ℝ}
(hf : Filter.Tendsto f l (nhds x))
(hg : Filter.Tendsto g l (nhds y))
(h : x ≠ 0 ∨ 0 < y)
:
Filter.Tendsto (fun (t : α) => f t ^ g t) l (nhds (x ^ y))
theorem
Filter.Tendsto.rpow_const
{α : Type u_1}
{l : Filter α}
{f : α → ℝ}
{x p : ℝ}
(hf : Filter.Tendsto f l (nhds x))
(h : x ≠ 0 ∨ 0 ≤ p)
:
Filter.Tendsto (fun (a : α) => f a ^ p) l (nhds (x ^ p))
theorem
ContinuousAt.rpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℝ}
{x : α}
(hf : ContinuousAt f x)
(hg : ContinuousAt g x)
(h : f x ≠ 0 ∨ 0 < g x)
:
ContinuousAt (fun (t : α) => f t ^ g t) x
theorem
ContinuousWithinAt.rpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℝ}
{s : Set α}
{x : α}
(hf : ContinuousWithinAt f s x)
(hg : ContinuousWithinAt g s x)
(h : f x ≠ 0 ∨ 0 < g x)
:
ContinuousWithinAt (fun (t : α) => f t ^ g t) s x
theorem
ContinuousOn.rpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℝ}
{s : Set α}
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
(h : ∀ x ∈ s, f x ≠ 0 ∨ 0 < g x)
:
ContinuousOn (fun (t : α) => f t ^ g t) s
theorem
Continuous.rpow
{α : Type u_1}
[TopologicalSpace α]
{f g : α → ℝ}
(hf : Continuous f)
(hg : Continuous g)
(h : ∀ (x : α), f x ≠ 0 ∨ 0 < g x)
:
Continuous fun (x : α) => f x ^ g x
theorem
ContinuousWithinAt.rpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
{s : Set α}
{x : α}
{p : ℝ}
(hf : ContinuousWithinAt f s x)
(h : f x ≠ 0 ∨ 0 ≤ p)
:
ContinuousWithinAt (fun (x : α) => f x ^ p) s x
theorem
ContinuousAt.rpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
{x : α}
{p : ℝ}
(hf : ContinuousAt f x)
(h : f x ≠ 0 ∨ 0 ≤ p)
:
ContinuousAt (fun (x : α) => f x ^ p) x
theorem
ContinuousOn.rpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
{s : Set α}
{p : ℝ}
(hf : ContinuousOn f s)
(h : ∀ x ∈ s, f x ≠ 0 ∨ 0 ≤ p)
:
ContinuousOn (fun (x : α) => f x ^ p) s
theorem
Continuous.rpow_const
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℝ}
{p : ℝ}
(hf : Continuous f)
(h : ∀ (x : α), f x ≠ 0 ∨ 0 ≤ p)
:
Continuous fun (x : α) => f x ^ p
Continuity results for cpow
, part II #
These results involve relating real and complex powers, so cannot be done higher up.
theorem
Complex.continuousAt_cpow_zero_of_re_pos
{z : ℂ}
(hz : 0 < z.re)
:
ContinuousAt (fun (x : ℂ × ℂ) => x.1 ^ x.2) (0, z)
See also continuousAt_cpow
and Complex.continuousAt_cpow_of_re_pos
.
theorem
Complex.continuousAt_cpow_of_re_pos
{p : ℂ × ℂ}
(h₁ : 0 ≤ p.1.re ∨ p.1.im ≠ 0)
(h₂ : 0 < p.2.re)
:
ContinuousAt (fun (x : ℂ × ℂ) => x.1 ^ x.2) p
See also continuousAt_cpow
for a version that assumes p.1 ≠ 0
but makes no
assumptions about p.2
.
theorem
Complex.continuousAt_cpow_const_of_re_pos
{z w : ℂ}
(hz : 0 ≤ z.re ∨ z.im ≠ 0)
(hw : 0 < w.re)
:
ContinuousAt (fun (x : ℂ) => x ^ w) z
See also continuousAt_cpow_const
for a version that assumes z ≠ 0
but makes no
assumptions about w
.
theorem
Complex.continuousAt_ofReal_cpow_const
(x : ℝ)
(y : ℂ)
(h : 0 < y.re ∨ x ≠ 0)
:
ContinuousAt (fun (a : ℝ) => ↑a ^ y) x
theorem
Complex.continuous_ofReal_cpow_const
{y : ℂ}
(hs : 0 < y.re)
:
Continuous fun (x : ℝ) => ↑x ^ y
Limits and continuity for ℝ≥0
powers #
theorem
NNReal.eventually_pow_one_div_le
(x : NNReal)
{y : NNReal}
(hy : 1 < y)
:
∀ᶠ (n : ℕ) in Filter.atTop, x ^ (1 / ↑n) ≤ y
theorem
Filter.Tendsto.nnrpow
{α : Type u_1}
{f : Filter α}
{u : α → NNReal}
{v : α → ℝ}
{x : NNReal}
{y : ℝ}
(hx : Filter.Tendsto u f (nhds x))
(hy : Filter.Tendsto v f (nhds y))
(h : x ≠ 0 ∨ 0 < y)
:
Filter.Tendsto (fun (a : α) => u a ^ v a) f (nhds (x ^ y))
theorem
NNReal.continuousAt_rpow_const
{x : NNReal}
{y : ℝ}
(h : x ≠ 0 ∨ 0 ≤ y)
:
ContinuousAt (fun (z : NNReal) => z ^ y) x
theorem
NNReal.continuousOn_rpow_const_compl_zero
{r : ℝ}
:
ContinuousOn (fun (z : NNReal) => z ^ r) {0}ᶜ
theorem
NNReal.continuousOn_rpow_const
{r : ℝ}
{s : Set NNReal}
(h : 0 ∉ s ∨ 0 ≤ r)
:
ContinuousOn (fun (z : NNReal) => z ^ r) s
Continuity for ℝ≥0∞
powers #
theorem
Filter.Tendsto.ennrpow_const
{α : Type u_1}
{f : Filter α}
{m : α → ENNReal}
{a : ENNReal}
(r : ℝ)
(hm : Filter.Tendsto m f (nhds a))
:
Filter.Tendsto (fun (x : α) => m x ^ r) f (nhds (a ^ r))