Inverse of the exp
function. Returns values such that (log x).im > - π
and (log x).im ≤ π
.
log 0 = 0
Equations
- Complex.log x = ↑(Real.log (Complex.abs x)) + ↑x.arg * Complex.I
Instances For
@[simp]
theorem
Complex.log_conj_eq_ite
(x : ℂ)
:
log ((starRingEnd ℂ) x) = if x.arg = Real.pi then log x else (starRingEnd ℂ) (log x)
theorem
Complex.log_conj
(x : ℂ)
(h : x.arg ≠ Real.pi)
:
log ((starRingEnd ℂ) x) = (starRingEnd ℂ) (log x)
Alias of the reverse direction of Complex.countable_preimage_exp
.
theorem
Complex.continuousWithinAt_log_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0)
:
ContinuousWithinAt log {z : ℂ | 0 ≤ z.im} z
@[simp]
theorem
Complex.map_exp_comap_re_atBot :
Filter.map exp (Filter.comap re Filter.atBot) = nhdsWithin 0 {0}ᶜ
@[simp]
theorem
Filter.Tendsto.clog
{α : Type u_1}
{l : Filter α}
{f : α → ℂ}
{x : ℂ}
(h : Tendsto f l (nhds x))
(hx : x ∈ Complex.slitPlane)
:
Tendsto (fun (t : α) => Complex.log (f t)) l (nhds (Complex.log x))
theorem
ContinuousAt.clog
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{x : α}
(h₁ : ContinuousAt f x)
(h₂ : f x ∈ Complex.slitPlane)
:
ContinuousAt (fun (t : α) => Complex.log (f t)) x
theorem
ContinuousWithinAt.clog
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{s : Set α}
{x : α}
(h₁ : ContinuousWithinAt f s x)
(h₂ : f x ∈ Complex.slitPlane)
:
ContinuousWithinAt (fun (t : α) => Complex.log (f t)) s x
theorem
ContinuousOn.clog
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
{s : Set α}
(h₁ : ContinuousOn f s)
(h₂ : ∀ x ∈ s, f x ∈ Complex.slitPlane)
:
ContinuousOn (fun (t : α) => Complex.log (f t)) s
theorem
Continuous.clog
{α : Type u_1}
[TopologicalSpace α]
{f : α → ℂ}
(h₁ : Continuous f)
(h₂ : ∀ (x : α), f x ∈ Complex.slitPlane)
:
Continuous fun (t : α) => Complex.log (f t)
theorem
Real.summable_cexp_multipliable
{α : Type u_1}
{ι : Type u_2}
(f : ι → α → ℝ)
(hfn : ∀ (x : α) (n : ι), 0 < f n x)
(hf : ∀ (x : α), Summable fun (n : ι) => log (f n x))
(a : α)
:
Multipliable fun (b : ι) => f b a
theorem
Complex.summable_cexp_multipliable
{α : Type u_1}
{ι : Type u_2}
(f : ι → α → ℂ)
(hfn : ∀ (x : α) (n : ι), f n x ≠ 0)
(hf : ∀ (x : α), Summable fun (n : ι) => log (f n x))
(a : α)
:
Multipliable fun (b : ι) => f b a