The argument of a complex number. #
We define arg : ℂ → ℝ
, returning a real number in the range (-π, π],
such that for x ≠ 0
, sin (arg x) = x.im / x.abs
and cos (arg x) = x.re / x.abs
,
while arg 0
defaults to 0
arg
returns values in the range (-π, π], such that for x ≠ 0
,
sin (arg x) = x.im / x.abs
and cos (arg x) = x.re / x.abs
,
arg 0
defaults to 0
Equations
- x.arg = if 0 ≤ x.re then Real.arcsin (x.im / Complex.abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / Complex.abs x) + Real.pi else Real.arcsin ((-x).im / Complex.abs x) - Real.pi
Instances For
@[simp]
theorem
Complex.arg_of_im_nonneg_of_ne_zero
{z : ℂ}
(h₁ : 0 ≤ z.im)
(h₂ : z ≠ 0)
:
z.arg = Real.arccos (z.re / abs z)
theorem
Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0)
:
Filter.Tendsto arg (nhdsWithin z {z : ℂ | z.im < 0}) (nhds (-Real.pi))
theorem
Complex.continuousWithinAt_arg_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0)
:
ContinuousWithinAt arg {z : ℂ | 0 ≤ z.im} z
theorem
Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0)
:
Filter.Tendsto arg (nhdsWithin z {z : ℂ | 0 ≤ z.im}) (nhds Real.pi)