Documentation

Mathlib.Analysis.SpecialFunctions.Complex.Arg

The argument of a complex number. #

We define arg : ℂ → ℝ, returning a real number in the range (-π, π], such that for x ≠ 0, sin (arg x) = x.im / x.abs and cos (arg x) = x.re / x.abs, while arg 0 defaults to 0

noncomputable def Complex.arg (x : ) :

arg returns values in the range (-π, π], such that for x ≠ 0, sin (arg x) = x.im / x.abs and cos (arg x) = x.re / x.abs, arg 0 defaults to 0

Equations
Instances For
    theorem Complex.sin_arg (x : ) :
    theorem Complex.cos_arg {x : } (hx : x 0) :
    @[simp]
    theorem Complex.abs_mul_exp_arg_mul_I (x : ) :
    (abs x) * exp (x.arg * I) = x
    @[simp]
    theorem Complex.abs_mul_cos_add_sin_mul_I (x : ) :
    (abs x) * (cos x.arg + sin x.arg * I) = x
    @[simp]
    @[simp]
    theorem Complex.abs_eq_one_iff (z : ) :
    abs z = 1 ∃ (θ : ), exp (θ * I) = z
    @[simp]
    theorem Complex.range_exp_mul_I :
    (Set.range fun (x : ) => exp (x * I)) = Metric.sphere 0 1
    theorem Complex.arg_mul_cos_add_sin_mul_I {r : } (hr : 0 < r) {θ : } (hθ : θ Set.Ioc (-Real.pi) Real.pi) :
    (r * (cos θ + sin θ * I)).arg = θ
    theorem Complex.arg_cos_add_sin_mul_I {θ : } (hθ : θ Set.Ioc (-Real.pi) Real.pi) :
    (cos θ + sin θ * I).arg = θ
    theorem Complex.arg_exp_mul_I (θ : ) :
    (exp (θ * I)).arg = toIocMod (-Real.pi) θ
    @[simp]
    theorem Complex.arg_zero :
    arg 0 = 0
    theorem Complex.ext_abs_arg {x y : } (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) :
    x = y
    theorem Complex.ext_abs_arg_iff {x y : } :
    x = y abs x = abs y x.arg = y.arg
    @[simp]
    theorem Complex.arg_nonneg_iff {z : } :
    0 z.arg 0 z.im
    @[simp]
    theorem Complex.arg_neg_iff {z : } :
    z.arg < 0 z.im < 0
    theorem Complex.arg_real_mul (x : ) {r : } (hr : 0 < r) :
    (r * x).arg = x.arg
    theorem Complex.arg_mul_real {r : } (hr : 0 < r) (x : ) :
    (x * r).arg = x.arg
    theorem Complex.arg_eq_arg_iff {x y : } (hx : x 0) (hy : y 0) :
    x.arg = y.arg (abs y) / (abs x) * x = y
    @[simp]
    theorem Complex.arg_one :
    arg 1 = 0
    @[simp]
    theorem Complex.arg_div_self (x : ) :
    (x / x).arg = 0

    This holds true for all x : ℂ because of the junk values 0 / 0 = 0 and arg 0 = 0.

    @[simp]
    @[simp]
    @[simp]
    @[simp]
    theorem Complex.tan_arg (x : ) :
    theorem Complex.arg_ofReal_of_nonneg {x : } (hx : 0 x) :
    (↑x).arg = 0
    @[simp]
    theorem Complex.natCast_arg {n : } :
    (↑n).arg = 0
    @[simp]
    theorem Complex.ofNat_arg {n : } [n.AtLeastTwo] :
    theorem Complex.arg_eq_zero_iff {z : } :
    z.arg = 0 0 z.re z.im = 0
    theorem Complex.arg_ofReal_of_neg {x : } (hx : x < 0) :
    (↑x).arg = Real.pi
    theorem Complex.arg_of_re_nonneg {x : } (hx : 0 x.re) :
    theorem Complex.arg_of_re_neg_of_im_nonneg {x : } (hx_re : x.re < 0) (hx_im : 0 x.im) :
    theorem Complex.arg_of_re_neg_of_im_neg {x : } (hx_re : x.re < 0) (hx_im : x.im < 0) :
    theorem Complex.arg_of_im_nonneg_of_ne_zero {z : } (h₁ : 0 z.im) (h₂ : z 0) :
    theorem Complex.arg_of_im_pos {z : } (hz : 0 < z.im) :
    theorem Complex.arg_of_im_neg {z : } (hz : z.im < 0) :
    @[simp]
    theorem Complex.abs_eq_one_iff' {x : } :
    abs x = 1 θSet.Ioc (-Real.pi) Real.pi, exp (θ * I) = x
    theorem Complex.arg_lt_pi_div_two_iff {z : } :
    z.arg < Real.pi / 2 0 < z.re z.im < 0 z = 0
    @[simp]
    @[simp]
    theorem Complex.arg_conj_coe_angle (x : ) :
    ((starRingEnd ) x).arg = -x.arg
    @[simp]
    theorem Complex.arg_inv_coe_angle (x : ) :
    x⁻¹.arg = -x.arg
    theorem Complex.arg_neg_coe_angle {x : } (hx : x 0) :
    (-x).arg = x.arg + Real.pi
    theorem Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : } (hr : 0 < r) (θ : ) :
    (r * (cos θ + sin θ * I)).arg = toIocMod Real.two_pi_pos (-Real.pi) θ
    theorem Complex.arg_mul_cos_add_sin_mul_I_sub {r : } (hr : 0 < r) (θ : ) :
    (r * (cos θ + sin θ * I)).arg - θ = 2 * Real.pi * (Real.pi - θ) / (2 * Real.pi)
    theorem Complex.arg_cos_add_sin_mul_I_sub (θ : ) :
    (cos θ + sin θ * I).arg - θ = 2 * Real.pi * (Real.pi - θ) / (2 * Real.pi)
    theorem Complex.arg_mul_cos_add_sin_mul_I_coe_angle {r : } (hr : 0 < r) (θ : Real.Angle) :
    (r * (θ.cos + θ.sin * I)).arg = θ
    theorem Complex.arg_mul_coe_angle {x y : } (hx : x 0) (hy : y 0) :
    (x * y).arg = x.arg + y.arg
    theorem Complex.arg_div_coe_angle {x y : } (hx : x 0) (hy : y 0) :
    (x / y).arg = x.arg - y.arg
    @[simp]
    theorem Complex.arg_coe_angle_eq_iff {x y : } :
    x.arg = y.arg x.arg = y.arg
    theorem Complex.arg_mul_eq_add_arg_iff {x y : } (hx₀ : x 0) (hy₀ : y 0) :
    theorem Complex.arg_mul {x y : } (hx₀ : x 0) (hy₀ : y 0) :
    x.arg + y.arg Set.Ioc (-Real.pi) Real.pi(x * y).arg = x.arg + y.arg

    Alias of the reverse direction of Complex.arg_mul_eq_add_arg_iff.

    An alternative description of the slit plane as consisting of nonzero complex numbers whose argument is not π.

    theorem Complex.arg_eq_nhds_of_re_pos {x : } (hx : 0 < x.re) :
    arg =ᶠ[nhds x] fun (x : ) => Real.arcsin (x.im / abs x)
    theorem Complex.arg_eq_nhds_of_re_neg_of_im_pos {x : } (hx_re : x.re < 0) (hx_im : 0 < x.im) :
    arg =ᶠ[nhds x] fun (x : ) => Real.arcsin ((-x).im / abs x) + Real.pi
    theorem Complex.arg_eq_nhds_of_re_neg_of_im_neg {x : } (hx_re : x.re < 0) (hx_im : x.im < 0) :
    arg =ᶠ[nhds x] fun (x : ) => Real.arcsin ((-x).im / abs x) - Real.pi
    theorem Complex.arg_eq_nhds_of_im_pos {z : } (hz : 0 < z.im) :
    arg =ᶠ[nhds z] fun (x : ) => Real.arccos (x.re / abs x)
    theorem Complex.arg_eq_nhds_of_im_neg {z : } (hz : z.im < 0) :
    arg =ᶠ[nhds z] fun (x : ) => -Real.arccos (x.re / abs x)