Documentation

Mathlib.Analysis.RCLike.TangentCone

Relationships between unique differentiability over and #

A set of unique differentiability for is also a set of unique differentiability for (or for a general field satisfying IsRCLikeNormedField 𝕜).

theorem UniqueDiffWithinAt.of_real {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [h𝕜 : IsRCLikeNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace E] {s : Set E} {x : E} (hs : UniqueDiffWithinAt s x) :
theorem UniqueDiffOn.of_real {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [h𝕜 : IsRCLikeNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace E] {s : Set E} (hs : UniqueDiffOn s) :
theorem uniqueDiffWithinAt_convex_of_isRCLikeNormedField {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [h𝕜 : IsRCLikeNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace E] {s : Set E} {x : E} (conv : Convex s) (hs : (interior s).Nonempty) (hx : x closure s) :

In a real or complex vector space, a convex set with nonempty interior is a set of unique differentiability.

theorem uniqueDiffOn_convex_of_isRCLikeNormedField {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] [h𝕜 : IsRCLikeNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace E] {s : Set E} (conv : Convex s) (hs : (interior s).Nonempty) :

In a real or complex vector space, a convex set with nonempty interior is a set of unique differentiability.