Documentation

Mathlib.Analysis.Real.Spectrum

Some lemmas on the spectrum and quasispectrum of elements and positivity #

theorem SpectrumRestricts.nnreal_le_iff {A : Type u_1} [Ring A] [Algebra A] {a : A} (ha : SpectrumRestricts a ContinuousMap.realToNNReal) {r : NNReal} :
(∀ xspectrum NNReal a, r x) xspectrum a, r x
theorem SpectrumRestricts.nnreal_lt_iff {A : Type u_1} [Ring A] [Algebra A] {a : A} (ha : SpectrumRestricts a ContinuousMap.realToNNReal) {r : NNReal} :
(∀ xspectrum NNReal a, r < x) xspectrum a, r < x
theorem SpectrumRestricts.le_nnreal_iff {A : Type u_1} [Ring A] [Algebra A] {a : A} (ha : SpectrumRestricts a ContinuousMap.realToNNReal) {r : NNReal} :
(∀ xspectrum NNReal a, x r) xspectrum a, x r
theorem SpectrumRestricts.lt_nnreal_iff {A : Type u_1} [Ring A] [Algebra A] {a : A} (ha : SpectrumRestricts a ContinuousMap.realToNNReal) {r : NNReal} :
(∀ xspectrum NNReal a, x < r) xspectrum a, x < r
theorem coe_mem_spectrum_real_of_nonneg {A : Type u_1} [Ring A] [PartialOrder A] [Algebra A] [NonnegSpectrumClass A] {a : A} {x : NNReal} (ha : 0 a := by cfc_tac) :