Binomial coefficents and factorial variants #
This file proves asymptotic theorems for binomial coefficents and factorial variants.
Main statements #
isEquivalent_descFactorial
is the proof thatn.descFactorial k ~ n^k
asn → ∞
.isEquivalent_choose
is the proof thatn.choose k ~ n^k / k!
asn → ∞
.isTheta_choose
is the proof thatn.choose k = Θ(n^k)
asn → ∞
.
theorem
isEquivalent_descFactorial
(k : ℕ)
:
Asymptotics.IsEquivalent Filter.atTop (fun (n : ℕ) => ↑(n.descFactorial k)) fun (n : ℕ) => ↑n ^ k
n.descFactorial k
is asymptotically equivalent to n^k
.
theorem
isEquivalent_choose
(k : ℕ)
:
Asymptotics.IsEquivalent Filter.atTop (fun (n : ℕ) => ↑(n.choose k)) fun (n : ℕ) => ↑n ^ k / ↑k.factorial
n.choose k
is asymptotically equivalent to n^k / k!
.
n.choose k
is big-theta n^k
.