Documentation

Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Abs

Absolute value defined via the continuous functional calculus #

This file defines the absolute value via the non-unital continuous functional calculus and provides basic API.

Main declarations #

The absolute value defined via the non-unital continuous functional calculus.

Equations
Instances For

    Normal elements commute with their absolute value.

    theorem cfcₙ_norm_sq_nonneg {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [TopologicalSpace A] [Module 𝕜 A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) :
    0 cfcₙ (fun (z : 𝕜) => star (f z) * f z) a
    theorem cfcₙ_norm_nonneg {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [TopologicalSpace A] [Module 𝕜 A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] (f : 𝕜𝕜) (a : A) :
    0 cfcₙ (fun (x : 𝕜) => f x) a
    theorem CFC.abs_eq_cfcₙ_coe_norm (𝕜 : Type u_1) {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [TopologicalSpace A] [Module 𝕜 A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [Module A] [SMulCommClass A A] [IsScalarTower A A] [NonnegSpectrumClass A] [IsTopologicalRing A] [T2Space A] [NonUnitalContinuousFunctionalCalculus A IsSelfAdjoint] (a : A) (ha : p a := by cfc_tac) :
    abs a = cfcₙ (fun (z : 𝕜) => z) a
    theorem cfcₙ_comp_norm {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [TopologicalSpace A] [Module 𝕜 A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [Module A] [SMulCommClass A A] [IsScalarTower A A] [NonnegSpectrumClass A] [IsTopologicalRing A] [T2Space A] [NonUnitalContinuousFunctionalCalculus A IsSelfAdjoint] (f : 𝕜𝕜) (a : A) (ha : p a := by cfc_tac) (hf : ContinuousOn f ((fun (z : 𝕜) => z) '' quasispectrum 𝕜 a) := by cfc_cont_tac) :
    cfcₙ (fun (x : 𝕜) => f x) a = cfcₙ f (CFC.abs a)
    theorem CFC.quasispectrum_abs {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [NonUnitalRing A] [TopologicalSpace A] [Module 𝕜 A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [IsScalarTower 𝕜 A A] [SMulCommClass 𝕜 A A] [NonUnitalContinuousFunctionalCalculus 𝕜 A p] [Module A] [SMulCommClass A A] [IsScalarTower A A] [NonnegSpectrumClass A] [IsTopologicalRing A] [T2Space A] [NonUnitalContinuousFunctionalCalculus A IsSelfAdjoint] (a : A) (ha : p a := by cfc_tac) :
    quasispectrum 𝕜 (abs a) = (fun (z : 𝕜) => z) '' quasispectrum 𝕜 a
    theorem cfc_comp_norm {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [TopologicalSpace A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [Algebra 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [Algebra A] [NonnegSpectrumClass A] [IsTopologicalRing A] [T2Space A] [ContinuousFunctionalCalculus A IsSelfAdjoint] (f : 𝕜𝕜) (a : A) (ha : p a := by cfc_tac) (hf : ContinuousOn f ((fun (z : 𝕜) => z) '' spectrum 𝕜 a) := by cfc_cont_tac) :
    cfc (fun (x : 𝕜) => f x) a = cfc f (CFC.abs a)
    theorem CFC.spectrum_abs {𝕜 : Type u_1} {A : Type u_2} {p : AProp} [RCLike 𝕜] [Ring A] [TopologicalSpace A] [StarRing A] [PartialOrder A] [StarOrderedRing A] [Algebra 𝕜 A] [ContinuousFunctionalCalculus 𝕜 A p] [Algebra A] [NonnegSpectrumClass A] [IsTopologicalRing A] [T2Space A] [ContinuousFunctionalCalculus A IsSelfAdjoint] (a : A) (ha : p a := by cfc_tac) :
    spectrum 𝕜 (abs a) = (fun (z : 𝕜) => z) '' spectrum 𝕜 a