Absolute value defined via the continuous functional calculus #
This file defines the absolute value via the non-unital continuous functional calculus and provides basic API.
Main declarations #
noncomputable def
CFC.abs
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
A
The absolute value defined via the non-unital continuous functional calculus.
Instances For
@[simp]
theorem
CFC.abs_neg
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
@[simp]
theorem
CFC.abs_nonneg
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
:
theorem
CFC.abs_star
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
(a : A)
(ha : IsStarNormal a := by cfc_tac)
:
@[simp]
theorem
CFC.abs_zero
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
:
theorem
CFC.abs_mul_abs
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
:
theorem
Commute.cfcAbs_left
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
{a b : A}
(h₁ : Commute a b)
(h₂ : Commute a (star b))
:
theorem
Commute.cfcAbs_right
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
{a b : A}
(h₁ : Commute a b)
(h₂ : Commute a (star b))
:
theorem
Commute.cfcAbs_cfcAbs
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
{a b : A}
(h₁ : Commute a b)
(h₂ : Commute a (star b))
:
theorem
CFC.commute_abs_self
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsStarNormal a := by cfc_tac)
:
Normal elements commute with their absolute value.
theorem
Commute.cfcAbs_mul_eq
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
{a b : A}
(h₁ : Commute a b)
(h₂ : Commute a (star b))
:
theorem
CFC.abs_mul_self
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsStarNormal a := by cfc_tac)
:
theorem
CFC.abs_nnrpow_two
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
:
theorem
CFC.abs_nnrpow_two_mul
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(x : NNReal)
:
theorem
CFC.abs_nnrpow
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(x : NNReal)
:
theorem
CFC.abs_of_nonneg
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : 0 ≤ a := by cfc_tac)
:
theorem
CFC.abs_of_nonpos
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : a ≤ 0 := by cfc_tac)
:
theorem
CFC.abs_eq_cfcₙ_norm
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.posPart_add_negPart
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.abs_sub_self
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
theorem
CFC.abs_add_self
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
@[simp]
theorem
CFC.cfcAbs_cfcAbs
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
:
@[simp]
theorem
CFC.abs_smul_nonneg
{A : Type u_2}
[NonUnitalRing A]
[StarRing A]
[TopologicalSpace A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[StarModule ℝ A]
{R : Type u_3}
[Semiring R]
[SMulWithZero R NNReal]
[SMul R A]
[IsScalarTower R NNReal A]
(r : R)
(a : A)
:
theorem
cfcₙ_norm_sq_nonneg
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
(f : 𝕜 → 𝕜)
(a : A)
:
theorem
cfcₙ_norm_nonneg
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
(f : 𝕜 → 𝕜)
(a : A)
:
@[simp]
theorem
CFC.abs_smul
{𝕜 : Type u_1}
{A : Type u_2}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[StarModule 𝕜 A]
[StarModule ℝ A]
[IsScalarTower ℝ 𝕜 A]
(r : 𝕜)
(a : A)
:
theorem
CFC.abs_eq_cfcₙ_coe_norm
(𝕜 : Type u_1)
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(a : A)
(ha : p a := by cfc_tac)
:
theorem
cfcₙ_comp_norm
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(f : 𝕜 → 𝕜)
(a : A)
(ha : p a := by cfc_tac)
(hf : ContinuousOn f ((fun (z : 𝕜) => ↑‖z‖) '' quasispectrum 𝕜 a) := by cfc_cont_tac)
:
theorem
CFC.quasispectrum_abs
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[NonUnitalRing A]
[TopologicalSpace A]
[Module 𝕜 A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 A p]
[Module ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(a : A)
(ha : p a := by cfc_tac)
:
theorem
CFC.abs_eq_cfc_norm
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
(a : A)
(ha : IsSelfAdjoint a := by cfc_tac)
:
@[simp]
theorem
CFC.abs_one
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
:
@[simp]
theorem
CFC.abs_algebraMap_nnreal
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[StarModule ℝ A]
(x : NNReal)
:
@[simp]
theorem
CFC.abs_natCast
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[StarModule ℝ A]
(n : ℕ)
:
@[simp]
theorem
CFC.abs_ofNat
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[StarModule ℝ A]
(n : ℕ)
[n.AtLeastTwo]
:
@[simp]
theorem
CFC.abs_intCast
{A : Type u_2}
[Ring A]
[StarRing A]
[TopologicalSpace A]
[Algebra ℝ A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[StarModule ℝ A]
(n : ℤ)
:
@[simp]
theorem
CFC.abs_algebraMap
{𝕜 : Type u_1}
{A : Type u_2}
[RCLike 𝕜]
[Ring A]
[TopologicalSpace A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[Algebra 𝕜 A]
[Algebra ℝ A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[StarModule 𝕜 A]
[StarModule ℝ A]
[IsScalarTower ℝ 𝕜 A]
(c : 𝕜)
:
theorem
cfc_comp_norm
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[TopologicalSpace A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[Algebra 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[Algebra ℝ A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(f : 𝕜 → 𝕜)
(a : A)
(ha : p a := by cfc_tac)
(hf : ContinuousOn f ((fun (z : 𝕜) => ↑‖z‖) '' spectrum 𝕜 a) := by cfc_cont_tac)
:
theorem
CFC.abs_sq
{A : Type u_2}
[Ring A]
[TopologicalSpace A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[Algebra ℝ A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(a : A)
:
theorem
CFC.spectrum_abs
{𝕜 : Type u_1}
{A : Type u_2}
{p : A → Prop}
[RCLike 𝕜]
[Ring A]
[TopologicalSpace A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
[Algebra 𝕜 A]
[ContinuousFunctionalCalculus 𝕜 A p]
[Algebra ℝ A]
[NonnegSpectrumClass ℝ A]
[IsTopologicalRing A]
[T2Space A]
[ContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
(a : A)
(ha : p a := by cfc_tac)
:
@[simp]
theorem
CFC.abs_eq_zero_iff
{A : Type u_2}
[NonUnitalNormedRing A]
[StarRing A]
[CStarRing A]
[NormedSpace ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
{a : A}
:
@[simp]
theorem
CFC.norm_abs
{A : Type u_2}
[NonUnitalNormedRing A]
[StarRing A]
[CStarRing A]
[NormedSpace ℝ A]
[SMulCommClass ℝ A A]
[IsScalarTower ℝ A A]
[NonUnitalContinuousFunctionalCalculus ℝ A IsSelfAdjoint]
[PartialOrder A]
[StarOrderedRing A]
[NonnegSpectrumClass ℝ A]
{a : A}
: