Documentation

Mathlib.Analysis.SpecialFunctions.Exp

Complex and real exponential #

In this file we prove continuity of Complex.exp and Real.exp. We also prove a few facts about limits of Real.exp at infinity.

Tags #

exp

theorem Complex.locally_lipschitz_exp {r : Real} (hr_nonneg : LE.le 0 r) (hr_le : LE.le r 1) (x y : Complex) (hyx : LT.lt (Norm.norm (HSub.hSub y x)) r) :
theorem Filter.Tendsto.cexp {α : Type u_1} {l : Filter α} {f : αComplex} {z : Complex} (hf : Tendsto f l (nhds z)) :
Tendsto (fun (x : α) => Complex.exp (f x)) l (nhds (Complex.exp z))
theorem ContinuousWithinAt.cexp {α : Type u_1} [TopologicalSpace α] {f : αComplex} {s : Set α} {x : α} (h : ContinuousWithinAt f s x) :
ContinuousWithinAt (fun (y : α) => Complex.exp (f y)) s x
theorem ContinuousAt.cexp {α : Type u_1} [TopologicalSpace α] {f : αComplex} {x : α} (h : ContinuousAt f x) :
ContinuousAt (fun (y : α) => Complex.exp (f y)) x
theorem ContinuousOn.cexp {α : Type u_1} [TopologicalSpace α] {f : αComplex} {s : Set α} (h : ContinuousOn f s) :
ContinuousOn (fun (y : α) => Complex.exp (f y)) s
theorem Continuous.cexp {α : Type u_1} [TopologicalSpace α] {f : αComplex} (h : Continuous f) :
Continuous fun (y : α) => Complex.exp (f y)

The complex exponential function is uniformly continuous on left half planes.

@[deprecated UniformContinuousOn.cexp (since := "2025-02-11")]

Alias of UniformContinuousOn.cexp.


The complex exponential function is uniformly continuous on left half planes.

theorem Real.exp_sub_sum_range_isBigO_pow (n : Nat) :
Asymptotics.IsBigO (nhds 0) (fun (x : Real) => HSub.hSub (exp x) ((Finset.range n).sum fun (i : Nat) => HDiv.hDiv (HPow.hPow x i) i.factorial.cast)) fun (x : Real) => HPow.hPow x n
theorem Filter.Tendsto.rexp {α : Type u_1} {l : Filter α} {f : αReal} {z : Real} (hf : Tendsto f l (nhds z)) :
Tendsto (fun (x : α) => Real.exp (f x)) l (nhds (Real.exp z))
theorem ContinuousWithinAt.rexp {α : Type u_1} [TopologicalSpace α] {f : αReal} {s : Set α} {x : α} (h : ContinuousWithinAt f s x) :
ContinuousWithinAt (fun (y : α) => Real.exp (f y)) s x
theorem ContinuousAt.rexp {α : Type u_1} [TopologicalSpace α] {f : αReal} {x : α} (h : ContinuousAt f x) :
ContinuousAt (fun (y : α) => Real.exp (f y)) x
theorem ContinuousOn.rexp {α : Type u_1} [TopologicalSpace α] {f : αReal} {s : Set α} (h : ContinuousOn f s) :
ContinuousOn (fun (y : α) => Real.exp (f y)) s
theorem Continuous.rexp {α : Type u_1} [TopologicalSpace α] {f : αReal} (h : Continuous f) :
Continuous fun (y : α) => Real.exp (f y)
theorem Real.exp_half (x : Real) :
Eq (exp (HDiv.hDiv x 2)) (exp x).sqrt

The real exponential function tends to +∞ at +∞.

The real exponential function tends to 0 at -∞ or, equivalently, exp(-x) tends to 0 at +∞

The real exponential function tends to 1 at 0.

@[deprecated Real.tendsto_exp_atBot_nhdsGT (since := "2024-12-22")]

Alias of Real.tendsto_exp_atBot_nhdsGT.

theorem Real.isBoundedUnder_ge_exp_comp {α : Type u_1} (l : Filter α) (f : αReal) :
Filter.IsBoundedUnder (fun (x1 x2 : Real) => GE.ge x1 x2) l fun (x : α) => exp (f x)
theorem Real.isBoundedUnder_le_exp_comp {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l fun (x : α) => exp (f x)) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l f)

The function exp(x)/x^n tends to +∞ at +∞, for any natural number n

The function x^n * exp(-x) tends to 0 at +∞, for any natural number n.

The function (b * exp x + c) / (x ^ n) tends to +∞ at +∞, for any natural number n and any real numbers b and c such that b is positive.

theorem Real.tendsto_div_pow_mul_exp_add_atTop (b c : Real) (n : Nat) (hb : Ne 0 b) :

The function (x ^ n) / (b * exp x + c) tends to 0 at +∞, for any natural number n and any real numbers b and c such that b is nonzero.

theorem Real.tendsto_exp_comp_atTop {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Filter.Tendsto (fun (x : α) => exp (f x)) l Filter.atTop) (Filter.Tendsto f l Filter.atTop)
theorem Real.tendsto_comp_exp_atTop {α : Type u_1} {l : Filter α} {f : Realα} :
@[deprecated Real.comap_exp_nhdsGT_zero (since := "2024-12-22")]

Alias of Real.comap_exp_nhdsGT_zero.

theorem Real.tendsto_comp_exp_atBot {α : Type u_1} {l : Filter α} {f : Realα} :
Iff (Filter.Tendsto (fun (x : Real) => f (exp x)) Filter.atBot l) (Filter.Tendsto f (nhdsWithin 0 (Set.Ioi 0)) l)
theorem Real.tendsto_exp_comp_nhds_zero {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Filter.Tendsto (fun (x : α) => exp (f x)) l (nhds 0)) (Filter.Tendsto f l Filter.atBot)
@[deprecated Real.isOpenEmbedding_exp (since := "2024-10-18")]

Alias of Real.isOpenEmbedding_exp.

theorem Real.isBigO_exp_comp_exp_comp {α : Type u_1} {l : Filter α} {f g : αReal} :
Iff (Asymptotics.IsBigO l (fun (x : α) => exp (f x)) fun (x : α) => exp (g x)) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l (HSub.hSub f g))
theorem Real.isTheta_exp_comp_exp_comp {α : Type u_1} {l : Filter α} {f g : αReal} :
Iff (Asymptotics.IsTheta l (fun (x : α) => exp (f x)) fun (x : α) => exp (g x)) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l fun (x : α) => abs (HSub.hSub (f x) (g x)))
theorem Real.isLittleO_exp_comp_exp_comp {α : Type u_1} {l : Filter α} {f g : αReal} :
Iff (Asymptotics.IsLittleO l (fun (x : α) => exp (f x)) fun (x : α) => exp (g x)) (Filter.Tendsto (fun (x : α) => HSub.hSub (g x) (f x)) l Filter.atTop)
theorem Real.isLittleO_one_exp_comp {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Asymptotics.IsLittleO l (fun (x : α) => 1) fun (x : α) => exp (f x)) (Filter.Tendsto f l Filter.atTop)
theorem Real.isBigO_one_exp_comp {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Asymptotics.IsBigO l (fun (x : α) => 1) fun (x : α) => exp (f x)) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => GE.ge x1 x2) l f)

Real.exp (f x) is bounded away from zero along a filter if and only if this filter is bounded from below under f.

theorem Real.isBigO_exp_comp_one {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Asymptotics.IsBigO l (fun (x : α) => exp (f x)) fun (x : α) => 1) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l f)

Real.exp (f x) is bounded away from zero along a filter if and only if this filter is bounded from below under f.

theorem Real.isTheta_exp_comp_one {α : Type u_1} {l : Filter α} {f : αReal} :
Iff (Asymptotics.IsTheta l (fun (x : α) => exp (f x)) fun (x : α) => 1) (Filter.IsBoundedUnder (fun (x1 x2 : Real) => LE.le x1 x2) l fun (x : α) => abs (f x))

Real.exp (f x) is bounded away from zero and infinity along a filter l if and only if |f x| is bounded from above along this filter.

theorem Real.summable_exp_nat_mul_iff {a : Real} :
Iff (Summable fun (n : Nat) => exp (HMul.hMul n.cast a)) (LT.lt a 0)
theorem HasSum.rexp {ι : Type u_1} {f : ιReal} {a : Real} (h : HasSum f a) :

If f has sum a, then exp ∘ f has product exp a.

@[deprecated Complex.comap_exp_nhdsNE (since := "2024-12-22")]

Alias of Complex.comap_exp_nhdsNE.

theorem Complex.tendsto_exp_nhds_zero_iff {α : Type u_1} {l : Filter α} {f : αComplex} :
Iff (Filter.Tendsto (fun (x : α) => exp (f x)) l (nhds 0)) (Filter.Tendsto (fun (x : α) => (f x).re) l Filter.atBot)
@[deprecated Complex.tendsto_exp_comap_re_atBot_nhdsNE (since := "2024-12-22")]

Alias of Complex.tendsto_exp_comap_re_atBot_nhdsNE.

theorem HasSum.cexp {ι : Type u_1} {f : ιComplex} {a : Complex} (h : HasSum f a) :

If f has sum a, then exp ∘ f has product exp a.