Documentation

Mathlib.Analysis.SpecialFunctions.Pow.NthRootLemmas

Lemmas about Nat.nthRoot #

In this file we prove that Nat.nthRoot n a is indeed the floor of ⁿ√a.

TODO #

Rewrite the proof of Nat.nthRoot.lt_pow_go_succ_aux to avoid dependencies on real numbers, so that we can move this file to Mathlib/Data/Nat/NthRoot, then to Batteries.

@[simp]
theorem Nat.nthRoot_zero_left (a : ) :
nthRoot 0 a = 1
@[simp]
theorem Nat.nthRoot_zero_right {n : } (h : n 0) :
n.nthRoot 0 = 0
@[simp]
theorem Nat.nthRoot_one_right {n : } :
n.nthRoot 1 = 1
@[simp]
theorem Nat.pow_nthRoot_le_iff {n a : } :
n.nthRoot a ^ n a n 0 a 0

nthRoot n a ^ n ≤ a unless both n and a are zeros.

theorem Nat.pow_nthRoot_le {n a : } :
n 0 a 0n.nthRoot a ^ n a

Alias of the reverse direction of Nat.pow_nthRoot_le_iff.


nthRoot n a ^ n ≤ a unless both n and a are zeros.

theorem Nat.nthRoot.lt_pow_go_succ_aux {n a b : } (hb : b 0) :
a < ((a / b ^ n + n * b) / (n + 1) + 1) ^ (n + 1)

An auxiliary lemma saying that if b ≠ 0, then (a / b ^ n + n * b) / (n + 1) + 1 is a strict upper estimate on √[n + 1] a.

Currently, the proof relies on the weighted AM-GM inequality, which increases the dependency closure of this file by a lot.

A PR proving this inequality by more elementary means is very welcome.

theorem Nat.lt_pow_nthRoot_add_one {n : } (hn : n 0) (a : ) :
a < (n.nthRoot a + 1) ^ n
@[simp]
theorem Nat.le_nthRoot_iff {n a b : } (hn : n 0) :
a n.nthRoot b a ^ n b
@[simp]
theorem Nat.nthRoot_lt_iff {n a b : } (hn : n 0) :
n.nthRoot a < b a < b ^ n
@[simp]
theorem Nat.nthRoot_pow {n : } (hn : n 0) (a : ) :
n.nthRoot (a ^ n) = a
theorem Nat.nthRoot_eq_of_le_of_lt {n a b : } (h₁ : a ^ n b) (h₂ : b < (a + 1) ^ n) :
n.nthRoot b = a

If a ^ n ≤ b < (a + 1) ^ n, then n root of b equals a.

theorem Nat.exists_pow_eq_iff' {n a : } (hn : n 0) :
(∃ (x : ), x ^ n = a) n.nthRoot a ^ n = a
theorem Nat.exists_pow_eq_iff {n a : } :
(∃ (x : ), x ^ n = a) n = 0 a = 1 n 0 n.nthRoot a ^ n = a
instance Nat.instDecidableExistsPowEq {n a : } :
Decidable (∃ (x : ), x ^ n = a)
Equations