Documentation

Mathlib.CategoryTheory.Adjunction.Additive

Adjunctions between additive functors. #

This provides some results and constructions for adjunctions between functors on preadditive categories:

theorem CategoryTheory.Adjunction.right_adjoint_additive {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] :
theorem CategoryTheory.Adjunction.left_adjoint_additive {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [G.Additive] :
def CategoryTheory.Adjunction.homAddEquiv {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) :
AddEquiv (Quiver.Hom (F.obj X) Y) (Quiver.Hom X (G.obj Y))

If we have an adjunction adj : F ⊣ G of functors between preadditive categories, and if F is additive, then the hom set equivalence upgrades to an AddEquiv. Note that F is additive if and only if G is, by Adjunction.right_adjoint_additive and Adjunction.left_adjoint_additive.

Equations
Instances For
    theorem CategoryTheory.Adjunction.homAddEquiv_apply {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f : Quiver.Hom (F.obj X) Y) :
    Eq (DFunLike.coe (adj.homAddEquiv X Y) f) (DFunLike.coe (adj.homEquiv X Y) f)
    theorem CategoryTheory.Adjunction.homAddEquiv_symm_apply {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f : Quiver.Hom X (G.obj Y)) :
    theorem CategoryTheory.Adjunction.homAddEquiv_zero {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) :
    Eq (DFunLike.coe (adj.homEquiv X Y) 0) 0
    theorem CategoryTheory.Adjunction.homAddEquiv_add {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f f' : Quiver.Hom (F.obj X) Y) :
    Eq (DFunLike.coe (adj.homEquiv X Y) (HAdd.hAdd f f')) (HAdd.hAdd (DFunLike.coe (adj.homEquiv X Y) f) (DFunLike.coe (adj.homEquiv X Y) f'))
    theorem CategoryTheory.Adjunction.homAddEquiv_sub {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f f' : Quiver.Hom (F.obj X) Y) :
    Eq (DFunLike.coe (adj.homEquiv X Y) (HSub.hSub f f')) (HSub.hSub (DFunLike.coe (adj.homEquiv X Y) f) (DFunLike.coe (adj.homEquiv X Y) f'))
    theorem CategoryTheory.Adjunction.homAddEquiv_neg {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f : Quiver.Hom (F.obj X) Y) :
    Eq (DFunLike.coe (adj.homEquiv X Y) (Neg.neg f)) (Neg.neg (DFunLike.coe (adj.homEquiv X Y) f))
    theorem CategoryTheory.Adjunction.homAddEquiv_symm_zero {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) :
    Eq (DFunLike.coe (adj.homEquiv X Y).symm 0) 0
    theorem CategoryTheory.Adjunction.homAddEquiv_symm_add {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f f' : Quiver.Hom X (G.obj Y)) :
    theorem CategoryTheory.Adjunction.homAddEquiv_symm_sub {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f f' : Quiver.Hom X (G.obj Y)) :
    theorem CategoryTheory.Adjunction.homAddEquiv_symm_neg {C : Type u₁} {D : Type u₂} [Category C] [Category D] [Preadditive C] [Preadditive D] {F : Functor C D} {G : Functor D C} (adj : Adjunction F G) [F.Additive] (X : C) (Y : D) (f : Quiver.Hom X (G.obj Y)) :

    If we have an adjunction adj : F ⊣ G of functors between preadditive categories, and if F is additive, then the hom set equivalence upgrades to an isomorphism between G ⋙ preadditiveYoneda and preadditiveYoneda ⋙ F, once we throw in the necessary universe lifting functors. Note that F is additive if and only if G is, by Adjunction.right_adjoint_additive and Adjunction.left_adjoint_additive.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For