Documentation

Mathlib.CategoryTheory.Adjunction.Lifting

Adjoint lifting #

This file gives two constructions for building left adjoints: the adjoint triangle theorem and the adjoint lifting theorem. The adjoint triangle theorem concerns a functor U : B ⥤ C with a left adjoint F such that ε_X : FUX ⟶ X is a regular epi. Then for any category A with coequalizers of reflexive pairs, a functor R : A ⥤ B has a left adjoint if (and only if) the composite R ⋙ U does. Note that the condition on U regarding ε_X is automatically satisfied in the case when U is a monadic functor, giving the corollary: monadicAdjointTriangleLift, i.e. if U is monadic, A has reflexive coequalizers then R : A ⥤ B has a left adjoint provided R ⋙ U does.

The adjoint lifting theorem says that given a commutative square of functors (up to isomorphism):

  Q
A → B

U ↓ ↓ V C → D R

where U and V are monadic and A has reflexive coequalizers, then if R has a left adjoint then Q has a left adjoint.

Implementation #

It is more convenient to prove this theorem by assuming we are given the explicit adjunction rather than just a functor known to be a right adjoint. In docstrings, we write (η, ε) for the unit and counit of the adjunction adj₁ : F ⊣ U and (ι, δ) for the unit and counit of the adjunction adj₂ : F' ⊣ R ⋙ U.

TODO #

Dualise to lift right adjoints through comonads (by reversing 1-cells) and dualise to lift right adjoints through monads (by reversing 2-cells), and the combination.

References #

def CategoryTheory.LiftAdjoint.counitCoequalises {B : Type u₂} {C : Type u₃} [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Category.{v₃, u₃} C] {U : CategoryTheory.Functor B C} {F : CategoryTheory.Functor C B} (adj₁ : F U) [(X : B) → CategoryTheory.RegularEpi (adj₁.counit.app X)] (X : B) :
CategoryTheory.Limits.IsColimit (CategoryTheory.Limits.Cofork.ofπ (adj₁.counit.app X) (_ : CategoryTheory.CategoryStruct.comp (F.map (U.map (adj₁.counit.app X))) (adj₁.counit.app X) = CategoryTheory.CategoryStruct.comp (adj₁.counit.app (F.obj (U.obj X))) (adj₁.counit.app X)))

To show that ε_X is a coequalizer for (FUε_X, ε_FUX), it suffices to assume it's always a coequalizer of something (i.e. a regular epi).

Instances For
    def CategoryTheory.LiftAdjoint.otherMap {A : Type u₁} {B : Type u₂} {C : Type u₃} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Category.{v₃, u₃} C] {U : CategoryTheory.Functor B C} {F : CategoryTheory.Functor C B} (R : CategoryTheory.Functor A B) (F' : CategoryTheory.Functor C A) (adj₁ : F U) (adj₂ : F' CategoryTheory.Functor.comp R U) (X : B) :
    F'.obj (U.obj (F.obj (U.obj X))) F'.obj (U.obj X)

    (Implementation) To construct the left adjoint, we use the coequalizer of F' U ε_Y with the composite

    F' U F U X ⟶ F' U F U R F U' X ⟶ F' U R F' U X ⟶ F' U X

    where the first morphism is F' U F ι_UX, the second is F' U ε_RF'UX, and the third is δ_F'UX. We will show that this coequalizer exists and that it forms the object map for a left adjoint to R.

    Instances For

      Construct the object part of the desired left adjoint as the coequalizer of F'Uε_Y with otherMap.

      Instances For
        @[simp]
        theorem CategoryTheory.LiftAdjoint.constructLeftAdjointEquiv_apply {A : Type u₁} {B : Type u₂} {C : Type u₃} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Category.{v₃, u₃} C] {U : CategoryTheory.Functor B C} {F : CategoryTheory.Functor C B} (R : CategoryTheory.Functor A B) (F' : CategoryTheory.Functor C A) (adj₁ : F U) (adj₂ : F' CategoryTheory.Functor.comp R U) [CategoryTheory.Limits.HasReflexiveCoequalizers A] [(X : B) → CategoryTheory.RegularEpi (adj₁.counit.app X)] (Y : A) (X : B) :
        ∀ (a : CategoryTheory.LiftAdjoint.constructLeftAdjointObj R F' adj₁ adj₂ X Y), ↑(CategoryTheory.LiftAdjoint.constructLeftAdjointEquiv R F' adj₁ adj₂ Y X) a = (CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.LiftAdjoint.counitCoequalises adj₁ X) (R.obj Y)).symm { val := CategoryTheory.CategoryStruct.comp (F.map (↑(CategoryTheory.Adjunction.homEquiv adj₂ (U.obj X) Y) ↑(↑(CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.Limits.colimit.isColimit (CategoryTheory.Limits.parallelPair (F'.map (U.map (adj₁.counit.app X))) (CategoryTheory.LiftAdjoint.otherMap R F' adj₁ adj₂ X))) Y) a))) (adj₁.counit.app (R.obj Y)), property := (_ : (fun b => CategoryTheory.CategoryStruct.comp (F.map (U.map (adj₁.counit.app X))) b = CategoryTheory.CategoryStruct.comp (adj₁.counit.app (F.obj (U.obj X))) b) (CategoryTheory.CategoryStruct.comp (F.map (↑(CategoryTheory.Adjunction.homEquiv adj₂ (U.obj X) Y) ↑(↑(CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.Limits.colimit.isColimit (CategoryTheory.Limits.parallelPair (F'.map (U.map (adj₁.counit.app X))) (CategoryTheory.LiftAdjoint.otherMap R F' adj₁ adj₂ X))) Y) a))) (adj₁.counit.app (R.obj Y)))) }
        @[simp]
        theorem CategoryTheory.LiftAdjoint.constructLeftAdjointEquiv_symm_apply {A : Type u₁} {B : Type u₂} {C : Type u₃} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Category.{v₃, u₃} C] {U : CategoryTheory.Functor B C} {F : CategoryTheory.Functor C B} (R : CategoryTheory.Functor A B) (F' : CategoryTheory.Functor C A) (adj₁ : F U) (adj₂ : F' CategoryTheory.Functor.comp R U) [CategoryTheory.Limits.HasReflexiveCoequalizers A] [(X : B) → CategoryTheory.RegularEpi (adj₁.counit.app X)] (Y : A) (X : B) :
        ∀ (a : X R.obj Y), (CategoryTheory.LiftAdjoint.constructLeftAdjointEquiv R F' adj₁ adj₂ Y X).symm a = (CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.Limits.colimit.isColimit (CategoryTheory.Limits.parallelPair (F'.map (U.map (adj₁.counit.app X))) (CategoryTheory.LiftAdjoint.otherMap R F' adj₁ adj₂ X))) Y).symm { val := CategoryTheory.CategoryStruct.comp (F'.map (adj₁.unit.app (U.obj X))) (CategoryTheory.CategoryStruct.comp (F'.map (U.map ↑(↑(CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.LiftAdjoint.counitCoequalises adj₁ X) (R.obj Y)) a))) (adj₂.counit.app Y)), property := (_ : (fun b => CategoryTheory.CategoryStruct.comp (F'.map (U.map (adj₁.counit.app X))) b = CategoryTheory.CategoryStruct.comp (CategoryTheory.LiftAdjoint.otherMap R F' adj₁ adj₂ X) b) (CategoryTheory.CategoryStruct.comp (F'.map (adj₁.unit.app (U.obj X))) (CategoryTheory.CategoryStruct.comp (F'.map (U.map ↑(↑(CategoryTheory.Limits.Cofork.IsColimit.homIso (CategoryTheory.LiftAdjoint.counitCoequalises adj₁ X) (R.obj Y)) a))) (adj₂.counit.app Y)))) }

        The homset equivalence which helps show that R is a right adjoint.

        Instances For

          The adjoint triangle theorem: Suppose U : B ⥤ C has a left adjoint F such that each counit ε_X : FUX ⟶ X is a regular epimorphism. Then if a category A has coequalizers of reflexive pairs, then a functor R : A ⥤ B has a left adjoint if the composite R ⋙ U does.

          Note the converse is true (with weaker assumptions), by Adjunction.comp. See https://ncatlab.org/nlab/show/adjoint+triangle+theorem

          Instances For

            If R ⋙ U has a left adjoint, the domain of R has reflexive coequalizers and U is a monadic functor, then R has a left adjoint. This is a special case of adjointTriangleLift which is often more useful in practice.

            Instances For

              Suppose we have a commutative square of functors

                Q
              A → B
              

              U ↓ ↓ V C → D R

              where U has a left adjoint, A has reflexive coequalizers and V has a left adjoint such that each component of the counit is a regular epi. Then Q has a left adjoint if R has a left adjoint.

              See https://ncatlab.org/nlab/show/adjoint+lifting+theorem

              Instances For

                Suppose we have a commutative square of functors

                  Q
                A → B
                

                U ↓ ↓ V C → D R

                where U has a left adjoint, A has reflexive coequalizers and V is monadic. Then Q has a left adjoint if R has a left adjoint.

                See https://ncatlab.org/nlab/show/adjoint+lifting+theorem

                Instances For