Documentation

Mathlib.CategoryTheory.Adjunction.Mates

Mate of natural transformations #

This file establishes the bijection between the 2-cells

     L₁                  R₁
  C --→ D             C ←-- D
G ↓  ↗  ↓ H         G ↓  ↘  ↓ H
  E --→ F             E ←-- F
     L₂                  R₂

where L₁ ⊣ R₁ and L₂ ⊣ R₂, and shows that in the special case where G,H are identity then the bijection preserves and reflects isomorphisms (i.e. we have bijections (L₂ ⟶ L₁) ≃ (R₁ ⟶ R₂), and if either side is an iso then the other side is as well).

On its own, this bijection is not particularly useful but it includes a number of interesting cases as specializations.

For instance, this generalises the fact that adjunctions are unique (since if L₁ ≅ L₂ then we deduce R₁ ≅ R₂). Another example arises from considering the square representing that a functor H preserves products, in particular the morphism HA ⨯ H- ⟶ H(A ⨯ -). Then provided (A ⨯ -) and HA ⨯ - have left adjoints (for instance if the relevant categories are cartesian closed), the transferred natural transformation is the exponential comparison morphism: H(A ^ -) ⟶ HA ^ H-. Furthermore if H has a left adjoint L, this morphism is an isomorphism iff its mate L(HA ⨯ -) ⟶ A ⨯ L- is an isomorphism, see https://ncatlab.org/nlab/show/Frobenius+reciprocity#InCategoryTheory. This also relates to Grothendieck's yoga of six operations, though this is not spelled out in mathlib: https://ncatlab.org/nlab/show/six+operations.

Suppose we have a square of functors (where the top and bottom are adjunctions L₁ ⊣ R₁ and L₂ ⊣ R₂ respectively).

  C ↔ D
G ↓   ↓ H
  E ↔ F

Then we have a bijection between natural transformations G ⋙ L₂ ⟶ L₁ ⋙ H and R₁ ⋙ G ⟶ H ⋙ R₂. This can be seen as a bijection of the 2-cells:

     L₁                  R₁
  C --→ D             C ←-- D
G ↓  ↗  ↓ H         G ↓  ↘  ↓ H
  E --→ F             E ←-- F
     L₂                  R₂

Note that if one of the transformations is an iso, it does not imply the other is an iso.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.transferNatTrans_counit {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {E : Type u₃} {F : Type u₄} [CategoryTheory.Category.{v₃, u₃} E] [CategoryTheory.Category.{v₄, u₄} F] {G : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D F} {L₁ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {L₂ : CategoryTheory.Functor E F} {R₂ : CategoryTheory.Functor F E} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) (f : CategoryTheory.Functor.comp G L₂ CategoryTheory.Functor.comp L₁ H) (Y : D) :
    CategoryTheory.CategoryStruct.comp (L₂.map (((CategoryTheory.transferNatTrans adj₁ adj₂) f).app Y)) (adj₂.counit.app (H.obj Y)) = CategoryTheory.CategoryStruct.comp (f.app (R₁.obj Y)) (H.map (adj₁.counit.app Y))
    theorem CategoryTheory.unit_transferNatTrans {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {E : Type u₃} {F : Type u₄} [CategoryTheory.Category.{v₃, u₃} E] [CategoryTheory.Category.{v₄, u₄} F] {G : CategoryTheory.Functor C E} {H : CategoryTheory.Functor D F} {L₁ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {L₂ : CategoryTheory.Functor E F} {R₂ : CategoryTheory.Functor F E} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) (f : CategoryTheory.Functor.comp G L₂ CategoryTheory.Functor.comp L₁ H) (X : C) :
    CategoryTheory.CategoryStruct.comp (G.map (adj₁.unit.app X)) (((CategoryTheory.transferNatTrans adj₁ adj₂) f).app (L₁.obj X)) = CategoryTheory.CategoryStruct.comp (adj₂.unit.app (G.obj ((CategoryTheory.Functor.id C).obj X))) (R₂.map (f.app ((CategoryTheory.Functor.id C).obj X)))
    def CategoryTheory.transferNatTransSelf {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) :
    (L₂ L₁) (R₁ R₂)

    Given two adjunctions L₁ ⊣ R₁ and L₂ ⊣ R₂ both between categories C, D, there is a bijection between natural transformations L₂ ⟶ L₁ and natural transformations R₁ ⟶ R₂. This is defined as a special case of transferNatTrans, where the two "vertical" functors are identity. TODO: Generalise to when the two vertical functors are equivalences rather than being exactly 𝟭.

    Furthermore, this bijection preserves (and reflects) isomorphisms, i.e. a transformation is an iso iff its image under the bijection is an iso, see eg CategoryTheory.transferNatTransSelf_iso. This is in contrast to the general case transferNatTrans which does not in general have this property.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.transferNatTransSelf_counit {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) (f : L₂ L₁) (X : D) :
      CategoryTheory.CategoryStruct.comp (L₂.map (((CategoryTheory.transferNatTransSelf adj₁ adj₂) f).app X)) (adj₂.counit.app X) = CategoryTheory.CategoryStruct.comp (f.app (R₁.obj X)) (adj₁.counit.app X)
      theorem CategoryTheory.unit_transferNatTransSelf {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) (f : L₂ L₁) (X : C) :
      CategoryTheory.CategoryStruct.comp (adj₁.unit.app X) (((CategoryTheory.transferNatTransSelf adj₁ adj₂) f).app (L₁.obj X)) = CategoryTheory.CategoryStruct.comp (adj₂.unit.app X) (R₂.map (f.app X))
      theorem CategoryTheory.transferNatTransSelf_adjunction_id {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {L : CategoryTheory.Functor C C} {R : CategoryTheory.Functor C C} (adj : L R) (f : CategoryTheory.Functor.id C L) (X : C) :
      ((CategoryTheory.transferNatTransSelf adj CategoryTheory.Adjunction.id) f).app X = CategoryTheory.CategoryStruct.comp (f.app (R.obj X)) (adj.counit.app X)
      theorem CategoryTheory.transferNatTransSelf_adjunction_id_symm {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {L : CategoryTheory.Functor C C} {R : CategoryTheory.Functor C C} (adj : L R) (g : R CategoryTheory.Functor.id C) (X : C) :
      ((CategoryTheory.transferNatTransSelf adj CategoryTheory.Adjunction.id).symm g).app X = CategoryTheory.CategoryStruct.comp (adj.unit.app X) (g.app (L.obj X))
      theorem CategoryTheory.transferNatTransSelf_symm_comp {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] {L₁ : CategoryTheory.Functor C D} {L₂ : CategoryTheory.Functor C D} {L₃ : CategoryTheory.Functor C D} {R₁ : CategoryTheory.Functor D C} {R₂ : CategoryTheory.Functor D C} {R₃ : CategoryTheory.Functor D C} (adj₁ : L₁ R₁) (adj₂ : L₂ R₂) (adj₃ : L₃ R₃) (f : R₂ R₁) (g : R₃ R₂) :

      If f is an isomorphism, then the transferred natural transformation is an isomorphism. The converse is given in transferNatTransSelf_of_iso.

      Equations
      • =

      If f is an isomorphism, then the un-transferred natural transformation is an isomorphism. The converse is given in transferNatTransSelf_symm_of_iso.

      Equations
      • =

      If f is a natural transformation whose transferred natural transformation is an isomorphism, then f is an isomorphism. The converse is given in transferNatTransSelf_iso.

      If f is a natural transformation whose un-transferred natural transformation is an isomorphism, then f is an isomorphism. The converse is given in transferNatTransSelf_symm_iso.