Adjunctions with a parameter #
Given bifunctors F : C₁ ⥤ C₂ ⥤ C₃
and G : C₁ᵒᵖ ⥤ C₃ ⥤ C₂
,
this file introduces the notation F ⊣₂ G
for the adjunctions
with a parameter (in C₁
) between F
and G
.
(See MonoidalClosed.internalHomAdjunction₂
in the file
CategoryTheory.Closed.Monoidal
for an example of such an adjunction.)
Note: this notion is weaker than the notion of
"adjunction of two variables" which appears in the mathematical literature.
In order to have an adjunction of two variables, we need
a third functor H : C₂ᵒᵖ ⥤ C₃ ⥤ C₁
and two adjunctions with
a parameter F ⊣₂ G
and F.flip ⊣₂ H
.
TODO #
Show that given F : C₁ ⥤ C₂ ⥤ C₃
, if F.obj X₁
has a right adjoint
G X₁ : C₃ ⥤ C₂
for any X₁ : C₁
, then G
extends as a
bifunctor G' : C₁ᵒᵖ ⥤ C₃ ⥤ C₂
with F ⊣₂ G'
(and similarly for
left adjoints).
References #
- https://ncatlab.org/nlab/show/two-variable+adjunction
Given bifunctors F : C₁ ⥤ C₂ ⥤ C₃
and G : C₁ᵒᵖ ⥤ C₃ ⥤ C₂
,
an adjunction with parameter F ⊣₂ G
consists of the data of
adjunctions F.obj X₁ ⊣ G.obj (op X₁)
for all X₁ : C₁
which
satisfy a naturality condition with respect to X₁
.
a family of adjunctions
- unit_whiskerRight_map {X₁ Y₁ : C₁} (f : X₁ ⟶ Y₁) : CategoryStruct.comp (self.adj X₁).unit (whiskerRight (F.map f) (G.obj (Opposite.op X₁))) = CategoryStruct.comp (self.adj Y₁).unit (whiskerLeft (F.obj Y₁) (G.map f.op))
Instances For
The notation F ⊣₂ G
stands for ParametrizedAdjunction F G
representing that the bifunctor F
is the left adjoint to G
in an adjunction with a parameter.
Equations
- CategoryTheory.«term_⊣₂_» = Lean.ParserDescr.trailingNode `CategoryTheory.«term_⊣₂_» 15 15 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊣₂ ") (Lean.ParserDescr.cat `term 16))
Instances For
Alternative constructor for parametrized adjunctions, for which
the compatibility is stated in terms of Adjunction.homEquiv
.
Equations
- CategoryTheory.ParametrizedAdjunction.mk' adj h = { adj := adj, unit_whiskerRight_map := ⋯ }
Instances For
The bijection ((F.obj X₁).obj X₂ ⟶ X₃) ≃ (X₂ ⟶ (G.obj (op X₁)).obj X₃)
given by an adjunction with a parameter adj₂ : F ⊣₂ G
.