Given categories C D E, functors F : D ⥤ E and G : E ⥤ D with an adjunction
F ⊣ G, we provide the induced adjunction between the functor categories C ⥤ D and C ⥤ E,
and the functor categories E ⥤ C and D ⥤ C.
def
CategoryTheory.Adjunction.whiskerRight
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
:
Given an adjunction F ⊣ G, this provides the natural adjunction
(whiskeringRight C _ _).obj F ⊣ (whiskeringRight C _ _).obj G.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.whiskerRight_counit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
(X : Functor C E)
(X✝ : C)
:
@[simp]
theorem
CategoryTheory.Adjunction.whiskerRight_unit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
(X : Functor C D)
(X✝ : C)
:
def
CategoryTheory.Adjunction.whiskerLeft
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
:
Given an adjunction F ⊣ G, this provides the natural adjunction
(whiskeringLeft _ _ C).obj G ⊣ (whiskeringLeft _ _ C).obj F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Adjunction.whiskerLeft_unit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
(X : Functor D C)
(X✝ : D)
:
@[simp]
theorem
CategoryTheory.Adjunction.whiskerLeft_counit_app_app
(C : Type u_1)
{D : Type u_2}
{E : Type u_3}
[Category.{u_4, u_1} C]
[Category.{u_5, u_2} D]
[Category.{u_6, u_3} E]
{F : Functor D E}
{G : Functor E D}
(adj : F ⊣ G)
(X : Functor E C)
(X✝ : E)
: