Documentation

Mathlib.CategoryTheory.Bicategory.Adjunction.Mate

Mates in bicategories #

This file establishes the bijection between the 2-cells

         l₁                  r₁
      c --→ d             c ←-- d
    g ↓  ↗  ↓ h         g ↓  ↘  ↓ h
      e --→ f             e ←-- f
         l₂                  r₂

where l₁ ⊣ r₁ and l₂ ⊣ r₂. The corresponding natural transformations are called mates.

For the bicategory Cat, the definitions in this file are provided in Mathlib/CategoryTheory/Adjunction/Mates.lean, where you can find more detailed documentation about mates.

Remarks #

To be precise, the definitions in Mathlib/CategoryTheory/Adjunction/Mates.lean are universe polymorphic, so they are not simple specializations of the definitions in this file.

def CategoryTheory.Bicategory.mateEquiv {B : Type u} [Bicategory B] {c d e f : B} {g : c e} {h : d f} {l₁ : c d} {r₁ : d c} {l₂ : e f} {r₂ : f e} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) :

Suppose we have a square of 1-morphisms (where the top and bottom are adjunctions l₁ ⊣ r₁ and l₂ ⊣ r₂ respectively).

  c ↔ d
g ↓   ↓ h
  e ↔ f

Then we have a bijection between natural transformations g ≫ l₂ ⟶ l₁ ≫ h and r₁ ≫ g ⟶ h ≫ r₂. This can be seen as a bijection of the 2-cells:

     l₁                  r₁
  c --→ d             c ←-- d
g ↓  ↗  ↓ h         g ↓  ↘  ↓ h
  e --→ f             e ←-- f
     L₂                  R₂

Note that if one of the transformations is an iso, it does not imply the other is an iso.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Bicategory.mateEquiv_apply {B : Type u} [Bicategory B] {c d e f : B} {g : c e} {h : d f} {l₁ : c d} {r₁ : d c} {l₂ : e f} {r₂ : f e} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : CategoryStruct.comp g l₂ CategoryStruct.comp l₁ h) :
    @[simp]
    theorem CategoryTheory.Bicategory.mateEquiv_symm_apply {B : Type u} [Bicategory B] {c d e f : B} {g : c e} {h : d f} {l₁ : c d} {r₁ : d c} {l₂ : e f} {r₂ : f e} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (β : CategoryStruct.comp r₁ g CategoryStruct.comp h r₂) :
    def CategoryTheory.Bicategory.leftAdjointSquare.vcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g₁ : a c} {g₂ : c e} {h₁ : b d} {h₂ : d f} {l₁ : a b} {l₂ : c d} {l₃ : e f} (α : CategoryStruct.comp g₁ l₂ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp g₂ l₃ CategoryStruct.comp l₂ h₂) :

    Squares between left adjoints can be composed "vertically" by pasting.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.Bicategory.rightAdjointSquare.vcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g₁ : a c} {g₂ : c e} {h₁ : b d} {h₂ : d f} {r₁ : b a} {r₂ : d c} {r₃ : f e} (α : CategoryStruct.comp r₁ g₁ CategoryStruct.comp h₁ r₂) (β : CategoryStruct.comp r₂ g₂ CategoryStruct.comp h₂ r₃) :

      Squares between right adjoints can be composed "vertically" by pasting.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.Bicategory.mateEquiv_vcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g₁ : a c} {g₂ : c e} {h₁ : b d} {h₂ : d f} {l₁ : a b} {r₁ : b a} {l₂ : c d} {r₂ : d c} {l₃ : e f} {r₃ : f e} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (α : CategoryStruct.comp g₁ l₂ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp g₂ l₃ CategoryStruct.comp l₂ h₂) :
        (mateEquiv adj₁ adj₃) (leftAdjointSquare.vcomp α β) = rightAdjointSquare.vcomp ((mateEquiv adj₁ adj₂) α) ((mateEquiv adj₂ adj₃) β)

        The mates equivalence commutes with vertical composition.

        def CategoryTheory.Bicategory.leftAdjointSquare.hcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g : a d} {h : b e} {k : c f} {l₁ : a b} {l₂ : d e} {l₃ : b c} {l₄ : e f} (α : CategoryStruct.comp g l₂ CategoryStruct.comp l₁ h) (β : CategoryStruct.comp h l₄ CategoryStruct.comp l₃ k) :

        Squares between left adjoints can be composed "horizontally" by pasting.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def CategoryTheory.Bicategory.rightAdjointSquare.hcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g : a d} {h : b e} {k : c f} {r₁ : b a} {r₂ : e d} {r₃ : c b} {r₄ : f e} (α : CategoryStruct.comp r₁ g CategoryStruct.comp h r₂) (β : CategoryStruct.comp r₃ h CategoryStruct.comp k r₄) :

          Squares between right adjoints can be composed "horizontally" by pasting.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CategoryTheory.Bicategory.mateEquiv_hcomp {B : Type u} [Bicategory B] {a b c d e f : B} {g : a d} {h : b e} {k : c f} {l₁ : a b} {r₁ : b a} {l₂ : d e} {r₂ : e d} {l₃ : b c} {r₃ : c b} {l₄ : e f} {r₄ : f e} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (adj₄ : Adjunction l₄ r₄) (α : CategoryStruct.comp g l₂ CategoryStruct.comp l₁ h) (β : CategoryStruct.comp h l₄ CategoryStruct.comp l₃ k) :
            (mateEquiv (adj₁.comp adj₃) (adj₂.comp adj₄)) (leftAdjointSquare.hcomp α β) = rightAdjointSquare.hcomp ((mateEquiv adj₁ adj₂) α) ((mateEquiv adj₃ adj₄) β)

            The mates equivalence commutes with horizontal composition of squares.

            def CategoryTheory.Bicategory.leftAdjointSquare.comp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {l₁ : a b} {l₂ : b c} {l₃ : d e} {l₄ : e f} {l₅ : x y} {l₆ : y z} (α : CategoryStruct.comp g₁ l₃ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp h₁ l₄ CategoryStruct.comp l₂ k₁) (γ : CategoryStruct.comp g₂ l₅ CategoryStruct.comp l₃ h₂) (δ : CategoryStruct.comp h₂ l₆ CategoryStruct.comp l₄ k₂) :

            Squares of squares between left adjoints can be composed by iterating vertical and horizontal composition.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem CategoryTheory.Bicategory.leftAdjointSquare.comp_vhcomp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {l₁ : a b} {l₂ : b c} {l₃ : d e} {l₄ : e f} {l₅ : x y} {l₆ : y z} (α : CategoryStruct.comp g₁ l₃ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp h₁ l₄ CategoryStruct.comp l₂ k₁) (γ : CategoryStruct.comp g₂ l₅ CategoryStruct.comp l₃ h₂) (δ : CategoryStruct.comp h₂ l₆ CategoryStruct.comp l₄ k₂) :
              comp α β γ δ = vcomp (hcomp α β) (hcomp γ δ)
              theorem CategoryTheory.Bicategory.leftAdjointSquare.comp_hvcomp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {l₁ : a b} {l₂ : b c} {l₃ : d e} {l₄ : e f} {l₅ : x y} {l₆ : y z} (α : CategoryStruct.comp g₁ l₃ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp h₁ l₄ CategoryStruct.comp l₂ k₁) (γ : CategoryStruct.comp g₂ l₅ CategoryStruct.comp l₃ h₂) (δ : CategoryStruct.comp h₂ l₆ CategoryStruct.comp l₄ k₂) :
              comp α β γ δ = hcomp (vcomp α γ) (vcomp β δ)

              Horizontal and vertical composition of squares commutes.

              def CategoryTheory.Bicategory.rightAdjointSquare.comp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {r₁ : b a} {r₂ : c b} {r₃ : e d} {r₄ : f e} {r₅ : y x} {r₆ : z y} (α : CategoryStruct.comp r₁ g₁ CategoryStruct.comp h₁ r₃) (β : CategoryStruct.comp r₂ h₁ CategoryStruct.comp k₁ r₄) (γ : CategoryStruct.comp r₃ g₂ CategoryStruct.comp h₂ r₅) (δ : CategoryStruct.comp r₄ h₂ CategoryStruct.comp k₂ r₆) :

              Squares of squares between right adjoints can be composed by iterating vertical and horizontal composition.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem CategoryTheory.Bicategory.rightAdjointSquare.comp_vhcomp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {r₁ : b a} {r₂ : c b} {r₃ : e d} {r₄ : f e} {r₅ : y x} {r₆ : z y} (α : CategoryStruct.comp r₁ g₁ CategoryStruct.comp h₁ r₃) (β : CategoryStruct.comp r₂ h₁ CategoryStruct.comp k₁ r₄) (γ : CategoryStruct.comp r₃ g₂ CategoryStruct.comp h₂ r₅) (δ : CategoryStruct.comp r₄ h₂ CategoryStruct.comp k₂ r₆) :
                comp α β γ δ = vcomp (hcomp α β) (hcomp γ δ)
                theorem CategoryTheory.Bicategory.rightAdjointSquare.comp_hvcomp {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {r₁ : b a} {r₂ : c b} {r₃ : e d} {r₄ : f e} {r₅ : y x} {r₆ : z y} (α : CategoryStruct.comp r₁ g₁ CategoryStruct.comp h₁ r₃) (β : CategoryStruct.comp r₂ h₁ CategoryStruct.comp k₁ r₄) (γ : CategoryStruct.comp r₃ g₂ CategoryStruct.comp h₂ r₅) (δ : CategoryStruct.comp r₄ h₂ CategoryStruct.comp k₂ r₆) :
                comp α β γ δ = hcomp (vcomp α γ) (vcomp β δ)

                Horizontal and vertical composition of squares commutes.

                theorem CategoryTheory.Bicategory.mateEquiv_square {B : Type u} [Bicategory B] {a b c d e f x y z : B} {g₁ : a d} {h₁ : b e} {k₁ : c f} {g₂ : d x} {h₂ : e y} {k₂ : f z} {l₁ : a b} {r₁ : b a} {l₂ : b c} {r₂ : c b} {l₃ : d e} {r₃ : e d} {l₄ : e f} {r₄ : f e} {l₅ : x y} {r₅ : y x} {l₆ : y z} {r₆ : z y} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (adj₄ : Adjunction l₄ r₄) (adj₅ : Adjunction l₅ r₅) (adj₆ : Adjunction l₆ r₆) (α : CategoryStruct.comp g₁ l₃ CategoryStruct.comp l₁ h₁) (β : CategoryStruct.comp h₁ l₄ CategoryStruct.comp l₂ k₁) (γ : CategoryStruct.comp g₂ l₅ CategoryStruct.comp l₃ h₂) (δ : CategoryStruct.comp h₂ l₆ CategoryStruct.comp l₄ k₂) :
                (mateEquiv (adj₁.comp adj₂) (adj₅.comp adj₆)) (leftAdjointSquare.comp α β γ δ) = rightAdjointSquare.comp ((mateEquiv adj₁ adj₃) α) ((mateEquiv adj₂ adj₄) β) ((mateEquiv adj₃ adj₅) γ) ((mateEquiv adj₄ adj₆) δ)

                The mates equivalence commutes with composition of squares of squares. These results form the basis for an isomorphism of double categories to be proven later.

                def CategoryTheory.Bicategory.conjugateEquiv {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) :
                (l₂ l₁) (r₁ r₂)

                Given two adjunctions l₁ ⊣ r₁ and l₂ ⊣ r₂ both between objects c, d, there is a bijection between 2-morphisms l₂ ⟶ l₁ and 2-morphisms r₁ ⟶ r₂. This is defined as a special case of mateEquiv, where the two "vertical" 1-morphisms are identities. Corresponding 2-morphisms are called conjugateEquiv.

                Furthermore, this bijection preserves (and reflects) isomorphisms, i.e. a 2-morphism is an iso iff its image under the bijection is an iso.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.Bicategory.conjugateEquiv_apply {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) :
                  theorem CategoryTheory.Bicategory.conjugateEquiv_apply' {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) :
                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_apply {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : r₁ r₂) :
                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_apply' {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : r₁ r₂) :
                  @[simp]
                  theorem CategoryTheory.Bicategory.conjugateEquiv_id {B : Type u} [Bicategory B] {c d : B} {l₁ : c d} {r₁ : d c} (adj₁ : Adjunction l₁ r₁) :
                  @[simp]
                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_id {B : Type u} [Bicategory B] {c d : B} {l₁ : c d} {r₁ : d c} (adj₁ : Adjunction l₁ r₁) :
                  @[simp]
                  theorem CategoryTheory.Bicategory.conjugateEquiv_comp {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ l₃ : c d} {r₁ r₂ r₃ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (α : l₂ l₁) (β : l₃ l₂) :
                  CategoryStruct.comp ((conjugateEquiv adj₁ adj₂) α) ((conjugateEquiv adj₂ adj₃) β) = (conjugateEquiv adj₁ adj₃) (CategoryStruct.comp β α)
                  @[simp]
                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_comp {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ l₃ : c d} {r₁ r₂ r₃ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (α : r₁ r₂) (β : r₂ r₃) :
                  CategoryStruct.comp ((conjugateEquiv adj₂ adj₃).symm β) ((conjugateEquiv adj₁ adj₂).symm α) = (conjugateEquiv adj₁ adj₃).symm (CategoryStruct.comp α β)
                  theorem CategoryTheory.Bicategory.conjugateEquiv_comm {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) {α : l₂ l₁} {β : l₁ l₂} (βα : CategoryStruct.comp β α = CategoryStruct.id l₁) :
                  CategoryStruct.comp ((conjugateEquiv adj₁ adj₂) α) ((conjugateEquiv adj₂ adj₁) β) = CategoryStruct.id r₁
                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_comm {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) {α : r₁ r₂} {β : r₂ r₁} (αβ : CategoryStruct.comp α β = CategoryStruct.id r₁) :
                  CategoryStruct.comp ((conjugateEquiv adj₂ adj₁).symm β) ((conjugateEquiv adj₁ adj₂).symm α) = CategoryStruct.id l₁
                  instance CategoryTheory.Bicategory.conjugateEquiv_iso {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) [IsIso α] :
                  IsIso ((conjugateEquiv adj₁ adj₂) α)

                  If α is an isomorphism between left adjoints, then its conjugate transformation is an isomorphism. The converse is given in conjugateEquiv_of_iso.

                  instance CategoryTheory.Bicategory.conjugateEquiv_symm_iso {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : r₁ r₂) [IsIso α] :
                  IsIso ((conjugateEquiv adj₁ adj₂).symm α)

                  If α is an isomorphism between right adjoints, then its conjugate transformation is an isomorphism. The converse is given in conjugateEquiv_symm_of_iso.

                  theorem CategoryTheory.Bicategory.conjugateEquiv_of_iso {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) [IsIso ((conjugateEquiv adj₁ adj₂) α)] :

                  If α is a natural transformation between left adjoints whose conjugate natural transformation is an isomorphism, then α is an isomorphism. The converse is given in Conjugate_iso.

                  theorem CategoryTheory.Bicategory.conjugateEquiv_symm_of_iso {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : r₁ r₂) [IsIso ((conjugateEquiv adj₁ adj₂).symm α)] :

                  If α is a natural transformation between right adjoints whose conjugate natural transformation is an isomorphism, then α is an isomorphism. The converse is given in conjugateEquiv_symm_iso.

                  def CategoryTheory.Bicategory.conjugateIsoEquiv {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) :
                  (l₂ l₁) (r₁ r₂)

                  Thus conjugation defines an equivalence between natural isomorphisms.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Bicategory.conjugateIsoEquiv_apply_hom {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) :
                    ((conjugateIsoEquiv adj₁ adj₂) α).hom = (conjugateEquiv adj₁ adj₂) α.hom
                    @[simp]
                    theorem CategoryTheory.Bicategory.conjugateIsoEquiv_apply_inv {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (α : l₂ l₁) :
                    ((conjugateIsoEquiv adj₁ adj₂) α).inv = (conjugateEquiv adj₂ adj₁) α.inv
                    @[simp]
                    theorem CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_hom {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (β : r₁ r₂) :
                    ((conjugateIsoEquiv adj₁ adj₂).symm β).hom = (conjugateEquiv adj₁ adj₂).symm β.hom
                    @[simp]
                    theorem CategoryTheory.Bicategory.conjugateIsoEquiv_symm_apply_inv {B : Type u} [Bicategory B] {c d : B} {l₁ l₂ : c d} {r₁ r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (β : r₁ r₂) :
                    ((conjugateIsoEquiv adj₁ adj₂).symm β).inv = (conjugateEquiv adj₂ adj₁).symm β.inv
                    theorem CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv {B : Type u} [Bicategory B] {a b c d : B} {f₁ : a c} {u₁ : c a} {f₂ : b d} {u₂ : d b} {l₁ : a b} {r₁ : b a} {l₂ : c d} {r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction f₁ u₁) (adj₄ : Adjunction f₂ u₂) (α : CategoryStruct.comp f₁ l₂ CategoryStruct.comp l₁ f₂) :
                    (mateEquiv adj₄ adj₃) ((mateEquiv adj₁ adj₂) α) = (conjugateEquiv (adj₁.comp adj₄) (adj₃.comp adj₂)) α

                    When all four morphisms in a square are left adjoints, the mates operation can be iterated: l₁ r₁ r₁ c --→ d c ←-- d c ←-- d f₁ ↓ ↗ ↓ f₂ f₁ ↓ ↘ ↓ f₂ u₁ ↑ ↙ ↑ u₂ a --→ b a ←-- b a ←-- b l₂ r₂ r₂ In this case the iterated mate equals the conjugate of the original 2-morphism and is thus an isomorphism if and only if the original 2-morphism is. This explains why some Beck-Chevalley 2-morphisms are isomorphisms.

                    theorem CategoryTheory.Bicategory.iterated_mateEquiv_conjugateEquiv_symm {B : Type u} [Bicategory B] {a b c d : B} {f₁ : a c} {u₁ : c a} {f₂ : b d} {u₂ : d b} {l₁ : a b} {r₁ : b a} {l₂ : c d} {r₂ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction f₁ u₁) (adj₄ : Adjunction f₂ u₂) (α : CategoryStruct.comp u₂ r₁ CategoryStruct.comp r₂ u₁) :
                    (mateEquiv adj₁ adj₂).symm ((mateEquiv adj₄ adj₃).symm α) = (conjugateEquiv (adj₁.comp adj₄) (adj₃.comp adj₂)).symm α
                    def CategoryTheory.Bicategory.leftAdjointSquareConjugate.vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {l₁ : a b} {l₂ l₃ : c d} (α : CategoryStruct.comp g l₂ CategoryStruct.comp l₁ h) (β : l₃ l₂) :

                    Composition of a squares between left adjoints with a conjugate square.

                    Equations
                    Instances For
                      def CategoryTheory.Bicategory.rightAdjointSquareConjugate.vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {r₁ : b a} {r₂ r₃ : d c} (α : CategoryStruct.comp r₁ g CategoryStruct.comp h r₂) (β : r₂ r₃) :

                      Composition of a squares between right adjoints with a conjugate square.

                      Equations
                      Instances For
                        theorem CategoryTheory.Bicategory.mateEquiv_conjugateEquiv_vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {l₁ : a b} {r₁ : b a} {l₂ : c d} {r₂ : d c} {l₃ : c d} {r₃ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (α : CategoryStruct.comp g l₂ CategoryStruct.comp l₁ h) (β : l₃ l₂) :
                        (mateEquiv adj₁ adj₃) (leftAdjointSquareConjugate.vcomp α β) = rightAdjointSquareConjugate.vcomp ((mateEquiv adj₁ adj₂) α) ((conjugateEquiv adj₂ adj₃) β)

                        The mates equivalence commutes with this composition, essentially by mateEquiv_vcomp.

                        def CategoryTheory.Bicategory.leftAdjointConjugateSquare.vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {l₁ l₂ : a b} {l₃ : c d} (α : l₂ l₁) (β : CategoryStruct.comp g l₃ CategoryStruct.comp l₂ h) :

                        Composition of a conjugate square with a squares between left adjoints.

                        Equations
                        Instances For
                          def CategoryTheory.Bicategory.rightAdjointConjugateSquare.vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {r₁ r₂ : b a} {r₃ : d c} (α : r₁ r₂) (β : CategoryStruct.comp r₂ g CategoryStruct.comp h r₃) :

                          Composition of a conjugate square with a squares between right adjoints.

                          Equations
                          Instances For
                            theorem CategoryTheory.Bicategory.conjugateEquiv_mateEquiv_vcomp {B : Type u} [Bicategory B] {a b c d : B} {g : a c} {h : b d} {l₁ : a b} {r₁ : b a} {l₂ : a b} {r₂ : b a} {l₃ : c d} {r₃ : d c} (adj₁ : Adjunction l₁ r₁) (adj₂ : Adjunction l₂ r₂) (adj₃ : Adjunction l₃ r₃) (α : l₂ l₁) (β : CategoryStruct.comp g l₃ CategoryStruct.comp l₂ h) :
                            (mateEquiv adj₁ adj₃) (leftAdjointConjugateSquare.vcomp α β) = rightAdjointConjugateSquare.vcomp ((conjugateEquiv adj₁ adj₂) α) ((mateEquiv adj₂ adj₃) β)

                            The mates equivalence commutes with this composition, essentially by mateEquiv_vcomp.