Documentation

Mathlib.CategoryTheory.Bicategory.EqToHom

eqToHom in bicategories #

This file records some of the behavior of eqToHom 1-morphisms and 2-morphisms in bicategories.

Given an equality of objects h : x = y in a bicategory, there is a 1-morphism eqToHom h : x ⟶ y just like in an ordinary category. The definitional property of this morhism is that if h : x = x, eqToHom h = 𝟙 x. This is implemented as the eqToHom morphism in the CategoryStruct underlying the bicategory.

Unlike the situation in ordinary category theory, these 1-morphisms do not compose strictly: eqToHom h.trans h' is merely isomorphic to eqToHom h ≫ eqToHom h'. We define this isomorphism as CategoryTheory.Bicategory.eqToHomTransIso.

Given an equality of 1-morphisms, we show that various bicategorical structure morphisms such as unitors, associators and whiskering conjugate well under eqToHoms.

TODO #

def CategoryTheory.Bicategory.eqToHomTransIso {B : Type u} [Bicategory B] {x y z : B} (e₁ : x = y) (e₂ : y = z) :

In a bicategory, eqToHoms do not compose strictly, but they do up to isomorphism.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Bicategory.associator_eqToHom_hom {B : Type u} [Bicategory B] {x y z t : B} (e₁ : x = y) (e₂ : y = z) (e₃ : z = t) :
    theorem CategoryTheory.Bicategory.associator_eqToHom_inv {B : Type u} [Bicategory B] {x y z t : B} (e₁ : x = y) (e₂ : y = z) (e₃ : z = t) :
    theorem CategoryTheory.Bicategory.associator_hom_congr {B : Type u} [Bicategory B] {x y z t : B} {f f' : x y} {g g' : y z} {h h' : z t} (ef : f = f') (eg : g = g') (eh : h = h') :
    theorem CategoryTheory.Bicategory.associator_inv_congr {B : Type u} [Bicategory B] {x y z t : B} {f f' : x y} {g g' : y z} {h h' : z t} (ef : f = f') (eg : g = g') (eh : h = h') :
    theorem CategoryTheory.Bicategory.congr_whiskerLeft {B : Type u} [Bicategory B] {x y : B} {f f' : x y} (h : f = f') {z : B} {g g' : y z} (η : g g') :
    theorem CategoryTheory.Bicategory.whiskerRight_congr {B : Type u} [Bicategory B] {y z : B} {g g' : y z} (h : g = g') {x : B} {f f' : x y} (η : f f') :