The bicategory of oplax functors between two bicategories #
Given bicategories B
and C
, we give a bicategory structure on OplaxFunctor B C
whose
- objects are oplax functors,
- 1-morphisms are oplax natural transformations, and
- 2-morphisms are modifications.
def
CategoryTheory.OplaxNatTrans.whiskerLeft
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι)
:
CategoryStruct.comp η θ ⟶ CategoryStruct.comp η ι
Left whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.OplaxNatTrans.whiskerLeft η Γ = { app := fun (a : B) => CategoryTheory.Bicategory.whiskerLeft (η.app a) (Γ.app a), naturality := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.whiskerLeft_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι)
(a : B)
:
(whiskerLeft η Γ).app a = Bicategory.whiskerLeft (η.app a) (Γ.app a)
def
CategoryTheory.OplaxNatTrans.whiskerRight
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
:
CategoryStruct.comp η ι ⟶ CategoryStruct.comp θ ι
Right whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.OplaxNatTrans.whiskerRight Γ ι = { app := fun (a : B) => CategoryTheory.Bicategory.whiskerRight (Γ.app a) (ι.app a), naturality := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.whiskerRight_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
(a : B)
:
(whiskerRight Γ ι).app a = Bicategory.whiskerRight (Γ.app a) (ι.app a)
def
CategoryTheory.OplaxNatTrans.associator
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
:
CategoryStruct.comp (CategoryStruct.comp η θ) ι ≅ CategoryStruct.comp η (CategoryStruct.comp θ ι)
Associator for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.OplaxNatTrans.associator η θ ι = CategoryTheory.Oplax.ModificationIso.ofComponents (fun (a : B) => CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.associator_inv_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxNatTrans.associator_hom_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
def
CategoryTheory.OplaxNatTrans.leftUnitor
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
:
CategoryStruct.comp (CategoryStruct.id F) η ≅ η
Left unitor for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.OplaxNatTrans.leftUnitor η = CategoryTheory.Oplax.ModificationIso.ofComponents (fun (a : B) => CategoryTheory.Bicategory.leftUnitor (η.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.leftUnitor_hom_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(leftUnitor η).hom.app a = (Bicategory.leftUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxNatTrans.leftUnitor_inv_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(leftUnitor η).inv.app a = (Bicategory.leftUnitor (η.app a)).inv
def
CategoryTheory.OplaxNatTrans.rightUnitor
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
:
CategoryStruct.comp η (CategoryStruct.id G) ≅ η
Right unitor for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.OplaxNatTrans.rightUnitor η = CategoryTheory.Oplax.ModificationIso.ofComponents (fun (a : B) => CategoryTheory.Bicategory.rightUnitor (η.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.rightUnitor_inv_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(rightUnitor η).inv.app a = (Bicategory.rightUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxNatTrans.rightUnitor_hom_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(rightUnitor η).hom.app a = (Bicategory.rightUnitor (η.app a)).hom
instance
CategoryTheory.OplaxFunctor.bicategory
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
:
Bicategory (OplaxFunctor B C)
A bicategory structure on the oplax functors between bicategories.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_homCategory_comp_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
(a b : OplaxFunctor B C)
{X✝ Y✝ Z✝ : a ⟶ b}
(Γ : Oplax.Modification X✝ Y✝)
(Δ : Oplax.Modification Y✝ Z✝)
(a✝ : B)
:
(CategoryStruct.comp Γ Δ).app a✝ = CategoryStruct.comp (Γ.app a✝) (Δ.app a✝)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_id_naturality
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
(F : OplaxFunctor B C)
{x✝ x✝¹ : B}
(f : x✝ ⟶ x✝¹)
:
(CategoryStruct.id F).naturality f = CategoryStruct.comp (Bicategory.rightUnitor (F.map f)).hom (Bicategory.leftUnitor (F.map f)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_associator_inv_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ : OplaxFunctor B C)
(η : x✝ ⟶ x✝¹)
(θ : x✝¹ ⟶ x✝²)
(ι : x✝² ⟶ x✝³)
(a : B)
:
(Bicategory.associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_whiskerLeft_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(x✝³ x✝⁴ : x✝¹ ⟶ x✝²)
(Γ : x✝³ ⟶ x✝⁴)
(a : B)
:
(Bicategory.whiskerLeft η Γ).app a = Bicategory.whiskerLeft (η.app a) (Γ.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_id_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
(F : OplaxFunctor B C)
(a : B)
:
(CategoryStruct.id F).app a = CategoryStruct.id (F.obj a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_leftUnitor_inv_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
(Bicategory.leftUnitor η).inv.app a = (Bicategory.leftUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_rightUnitor_inv_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
(Bicategory.rightUnitor η).inv.app a = (Bicategory.rightUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_comp_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{X✝ Y✝ Z✝ : OplaxFunctor B C}
(η : OplaxNatTrans X✝ Y✝)
(θ : OplaxNatTrans Y✝ Z✝)
(a : B)
:
(CategoryStruct.comp η θ).app a = CategoryStruct.comp (η.app a) (θ.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_leftUnitor_hom_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
(Bicategory.leftUnitor η).hom.app a = (Bicategory.leftUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_associator_hom_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ : OplaxFunctor B C)
(η : x✝ ⟶ x✝¹)
(θ : x✝¹ ⟶ x✝²)
(ι : x✝² ⟶ x✝³)
(a : B)
:
(Bicategory.associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_Hom
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
(F G : OplaxFunctor B C)
:
(F ⟶ G) = OplaxNatTrans F G
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_rightUnitor_hom_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
(Bicategory.rightUnitor η).hom.app a = (Bicategory.rightUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_comp_naturality
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{X✝ Y✝ Z✝ : OplaxFunctor B C}
(η : OplaxNatTrans X✝ Y✝)
(θ : OplaxNatTrans Y✝ Z✝)
{a b : B}
(f : a ⟶ b)
:
(CategoryStruct.comp η θ).naturality f = CategoryStruct.comp (Bicategory.associator (X✝.map f) (η.app b) (θ.app b)).inv
(CategoryStruct.comp (Bicategory.whiskerRight (η.naturality f) (θ.app b))
(CategoryStruct.comp (Bicategory.associator (η.app a) (Y✝.map f) (θ.app b)).hom
(CategoryStruct.comp (Bicategory.whiskerLeft (η.app a) (θ.naturality f))
(Bicategory.associator (η.app a) (θ.app a) (Z✝.map f)).inv)))
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_homCategory_id_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
(a b : OplaxFunctor B C)
(η : a ⟶ b)
(a✝ : B)
:
(CategoryStruct.id η).app a✝ = CategoryStruct.id (η.app a✝)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_whiskerRight_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ x✝⁴ : x✝ ⟶ x✝¹)
(Γ : x✝³ ⟶ x✝⁴)
(η : x✝¹ ⟶ x✝²)
(a : B)
:
(Bicategory.whiskerRight Γ η).app a = Bicategory.whiskerRight (Γ.app a) (η.app a)