Documentation

Mathlib.CategoryTheory.Bicategory.FunctorBicategory.Oplax

The bicategory of oplax functors between two bicategories #

Given bicategories B and C, we give a bicategory structure on OplaxFunctor B C whose

Left whiskering of an oplax natural transformation and a modification.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.OplaxNatTrans.whiskerLeft_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F G H : CategoryTheory.OplaxFunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) (a : B) :

    Right whiskering of an oplax natural transformation and a modification.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.OplaxNatTrans.whiskerRight_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F G H : CategoryTheory.OplaxFunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) (a : B) :

      Associator for the vertical composition of oplax natural transformations.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.OplaxNatTrans.associator_inv_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F G H I : CategoryTheory.OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
        (CategoryTheory.OplaxNatTrans.associator η θ ι).inv.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
        @[simp]
        theorem CategoryTheory.OplaxNatTrans.associator_hom_app {B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] {F G H I : CategoryTheory.OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
        (CategoryTheory.OplaxNatTrans.associator η θ ι).hom.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom

        A bicategory structure on the oplax functors between bicategories.

        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem CategoryTheory.OplaxFunctor.bicategory_associator_inv_app (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] {x✝ x✝¹ x✝² : CategoryTheory.OplaxFunctor B C} (x✝³ : CategoryTheory.OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
        (CategoryTheory.Bicategory.associator η θ ι).inv.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
        @[simp]
        theorem CategoryTheory.OplaxFunctor.bicategory_whiskerLeft_app (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] {x✝ x✝¹ x✝² : CategoryTheory.OplaxFunctor B C} (η : x✝ x✝¹) (x✝³ x✝⁴ : x✝¹ x✝²) (Γ : x✝³ x✝⁴) (a : B) :
        @[simp]
        theorem CategoryTheory.OplaxFunctor.bicategory_associator_hom_app (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] {x✝ x✝¹ x✝² : CategoryTheory.OplaxFunctor B C} (x✝³ : CategoryTheory.OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
        (CategoryTheory.Bicategory.associator η θ ι).hom.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
        @[simp]
        theorem CategoryTheory.OplaxFunctor.bicategory_whiskerRight_app (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] {x✝ x✝¹ x✝² : CategoryTheory.OplaxFunctor B C} (x✝³ x✝⁴ : x✝ x✝¹) (Γ : x✝³ x✝⁴) (η : x✝¹ x✝²) (a : B) :