Documentation

Mathlib.CategoryTheory.Bicategory.FunctorBicategory.Oplax

The bicategory of oplax functors between two bicategories #

Given bicategories B and C, we give a bicategory structure on OplaxFunctor B C whose

def CategoryTheory.OplaxNatTrans.whiskerLeft {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) :

Left whiskering of an oplax natural transformation and a modification.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.OplaxNatTrans.whiskerLeft_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} (η : F G) {θ ι : G H} (Γ : θ ι) (a : B) :
    (whiskerLeft η Γ).app a = Bicategory.whiskerLeft (η.app a) (Γ.app a)
    def CategoryTheory.OplaxNatTrans.whiskerRight {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) :

    Right whiskering of an oplax natural transformation and a modification.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.OplaxNatTrans.whiskerRight_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H : OplaxFunctor B C} {η θ : F G} (Γ : η θ) (ι : G H) (a : B) :
      (whiskerRight Γ ι).app a = Bicategory.whiskerRight (Γ.app a) (ι.app a)
      def CategoryTheory.OplaxNatTrans.associator {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) :

      Associator for the vertical composition of oplax natural transformations.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.OplaxNatTrans.associator_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
        (associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
        @[simp]
        theorem CategoryTheory.OplaxNatTrans.associator_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G H I : OplaxFunctor B C} (η : F G) (θ : G H) (ι : H I) (a : B) :
        (associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom

        Left unitor for the vertical composition of oplax natural transformations.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.OplaxNatTrans.leftUnitor_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
          (leftUnitor η).hom.app a = (Bicategory.leftUnitor (η.app a)).hom
          @[simp]
          theorem CategoryTheory.OplaxNatTrans.leftUnitor_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
          (leftUnitor η).inv.app a = (Bicategory.leftUnitor (η.app a)).inv

          Right unitor for the vertical composition of oplax natural transformations.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.OplaxNatTrans.rightUnitor_inv_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
            (rightUnitor η).inv.app a = (Bicategory.rightUnitor (η.app a)).inv
            @[simp]
            theorem CategoryTheory.OplaxNatTrans.rightUnitor_hom_app {B : Type u₁} [Bicategory B] {C : Type u₂} [Bicategory C] {F G : OplaxFunctor B C} (η : F G) (a : B) :
            (rightUnitor η).hom.app a = (Bicategory.rightUnitor (η.app a)).hom

            A bicategory structure on the oplax functors between bicategories.

            Equations
            • One or more equations did not get rendered due to their size.
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_homCategory_comp_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (a b : OplaxFunctor B C) {X✝ Y✝ Z✝ : a b} (Γ : Oplax.Modification X✝ Y✝) (Δ : Oplax.Modification Y✝ Z✝) (a✝ : B) :
            (CategoryStruct.comp Γ Δ).app a✝ = CategoryStruct.comp (Γ.app a✝) (Δ.app a✝)
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_id_naturality (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (F : OplaxFunctor B C) {x✝ x✝¹ : B} (f : x✝ x✝¹) :
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_associator_inv_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ : OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
            (Bicategory.associator η θ ι).inv.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_whiskerLeft_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (η : x✝ x✝¹) (x✝³ x✝⁴ : x✝¹ x✝²) (Γ : x✝³ x✝⁴) (a : B) :
            (Bicategory.whiskerLeft η Γ).app a = Bicategory.whiskerLeft (η.app a) (Γ.app a)
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_id_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (F : OplaxFunctor B C) (a : B) :
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_leftUnitor_inv_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :
            (Bicategory.leftUnitor η).inv.app a = (Bicategory.leftUnitor (η.app a)).inv
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_rightUnitor_inv_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :
            (Bicategory.rightUnitor η).inv.app a = (Bicategory.rightUnitor (η.app a)).inv
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_comp_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {X✝ Y✝ Z✝ : OplaxFunctor B C} (η : OplaxNatTrans X✝ Y✝) (θ : OplaxNatTrans Y✝ Z✝) (a : B) :
            (CategoryStruct.comp η θ).app a = CategoryStruct.comp (η.app a) (θ.app a)
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_leftUnitor_hom_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :
            (Bicategory.leftUnitor η).hom.app a = (Bicategory.leftUnitor (η.app a)).hom
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_associator_hom_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ : OplaxFunctor B C) (η : x✝ x✝¹) (θ : x✝¹ x✝²) (ι : x✝² x✝³) (a : B) :
            (Bicategory.associator η θ ι).hom.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_Hom (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (F G : OplaxFunctor B C) :
            (F G) = OplaxNatTrans F G
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_rightUnitor_hom_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ : OplaxFunctor B C} (η : x✝ x✝¹) (a : B) :
            (Bicategory.rightUnitor η).hom.app a = (Bicategory.rightUnitor (η.app a)).hom
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_comp_naturality (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {X✝ Y✝ Z✝ : OplaxFunctor B C} (η : OplaxNatTrans X✝ Y✝) (θ : OplaxNatTrans Y✝ Z✝) {a b : B} (f : a b) :
            (CategoryStruct.comp η θ).naturality f = CategoryStruct.comp (Bicategory.associator (X✝.map f) (η.app b) (θ.app b)).inv (CategoryStruct.comp (Bicategory.whiskerRight (η.naturality f) (θ.app b)) (CategoryStruct.comp (Bicategory.associator (η.app a) (Y✝.map f) (θ.app b)).hom (CategoryStruct.comp (Bicategory.whiskerLeft (η.app a) (θ.naturality f)) (Bicategory.associator (η.app a) (θ.app a) (Z✝.map f)).inv)))
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_homCategory_id_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] (a b : OplaxFunctor B C) (η : a b) (a✝ : B) :
            (CategoryStruct.id η).app a✝ = CategoryStruct.id (η.app a✝)
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_whiskerRight_app (B : Type u₁) [Bicategory B] (C : Type u₂) [Bicategory C] {x✝ x✝¹ x✝² : OplaxFunctor B C} (x✝³ x✝⁴ : x✝ x✝¹) (Γ : x✝³ x✝⁴) (η : x✝¹ x✝²) (a : B) :
            (Bicategory.whiskerRight Γ η).app a = Bicategory.whiskerRight (Γ.app a) (η.app a)