Documentation

Mathlib.CategoryTheory.Category.Cat.Limit

The category of small categories has all small limits. #

An object in the limit consists of a family of objects, which are carried to one another by the functors in the diagram. A morphism between two such objects is a family of morphisms between the corresponding objects, which are carried to one another by the action on morphisms of the functors in the diagram.

Future work #

Can the indexing category live in a lower universe?

Auxiliary definition: the diagram whose limit gives the morphism space between two objects of the limit category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Cat.HasLimits.homDiagram_map {J : Type v} [SmallCategory J] {F : Functor J Cat} (X Y : Limits.limit (F.comp objects)) {X✝ Y✝ : J} (f : X✝ Y✝) (g : Limits.limit.π (F.comp objects) X✝ X Limits.limit.π (F.comp objects) X✝ Y) :

    Auxiliary definition: the cone over the limit category.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Cat.HasLimits.limitCone_π_app_map {J : Type v} [SmallCategory J] (F : Functor J Cat) (j : J) {X✝ Y✝ : (((Functor.const J).obj (limitConeX F)).obj j)} (f : X✝ Y✝) :
      ((limitCone F).π.app j).map f = Limits.limit.π (homDiagram X✝ Y✝) j f

      Auxiliary definition: the universal morphism to the proposed limit cone.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitConeLift_obj {J : Type v} [SmallCategory J] (F : Functor J Cat) (s : Limits.Cone F) (a✝ : { pt := s.pt, π := { app := fun (j : J) => (s.π.app j).obj, naturality := } }.pt) :
        (limitConeLift F s).obj a✝ = Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.π.app j).obj, naturality := } } a✝
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitConeLift_map {J : Type v} [SmallCategory J] (F : Functor J Cat) (s : Limits.Cone F) {X✝ Y✝ : s.pt} (f : X✝ Y✝) :
        (limitConeLift F s).map f = Limits.Types.Limit.mk (homDiagram (Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.π.app j).obj, naturality := } } X✝) (Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.π.app j).obj, naturality := } } Y✝)) (fun (j : J) => CategoryStruct.comp (eqToHom ) (CategoryStruct.comp ((s.π.app j).map f) (eqToHom )))

        Auxiliary definition: the proposed cone is a limit cone.

        Equations
        Instances For

          The category of small categories has all small limits.