Documentation

Mathlib.CategoryTheory.Category.Cat.Limit

The category of small categories has all small limits. #

An object in the limit consists of a family of objects, which are carried to one another by the functors in the diagram. A morphism between two such objects is a family of morphisms between the corresponding objects, which are carried to one another by the action on morphisms of the functors in the diagram.

Future work #

Can the indexing category live in a lower universe?

Auxiliary definition: the diagram whose limit gives the morphism space between two objects of the limit category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Cat.HasLimits.homDiagram_map {J : Type v} [SmallCategory J] {F : Functor J Cat} (X Y : Limits.limit (F.comp objects)) {X✝ Y✝ : J} (f : X✝ Y✝) (g : Limits.limit.π (F.comp objects) X✝ X Limits.limit.π (F.comp objects) X✝ Y) :
    (homDiagram X Y).map f g = CategoryStruct.comp (eqToHom ) (CategoryStruct.comp ((F.map f).map g) (eqToHom ))
    @[simp]
    theorem CategoryTheory.Cat.HasLimits.homDiagram_obj {J : Type v} [SmallCategory J] {F : Functor J Cat} (X Y : Limits.limit (F.comp objects)) (j : J) :
    (homDiagram X Y).obj j = (Limits.limit.π (F.comp objects) j X Limits.limit.π (F.comp objects) j Y)

    Auxiliary definition: the limit category.

    Equations
    Instances For

      Auxiliary definition: the cone over the limit category.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitCone_π_app_obj {J : Type v} [SmallCategory J] (F : Functor J Cat) (j : J) (a✝ : Limits.limit (F.comp objects)) :
        ((limitCone F).app j).obj a✝ = Limits.limit.π (F.comp objects) j a✝
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitCone_π_app_map {J : Type v} [SmallCategory J] (F : Functor J Cat) (j : J) {X✝ Y✝ : (((Functor.const J).obj (limitConeX F)).obj j)} (f : X✝ Y✝) :
        ((limitCone F).app j).map f = Limits.limit.π (homDiagram X✝ Y✝) j f

        Auxiliary definition: the universal morphism to the proposed limit cone.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Cat.HasLimits.limitConeLift_obj {J : Type v} [SmallCategory J] (F : Functor J Cat) (s : Limits.Cone F) (a✝ : { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } }.pt) :
          (limitConeLift F s).obj a✝ = Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } a✝
          @[simp]
          theorem CategoryTheory.Cat.HasLimits.limitConeLift_map {J : Type v} [SmallCategory J] (F : Functor J Cat) (s : Limits.Cone F) {X✝ Y✝ : s.pt} (f : X✝ Y✝) :
          (limitConeLift F s).map f = Limits.Types.Limit.mk (homDiagram (Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } X✝) (Limits.limit.lift (F.comp objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } Y✝)) (fun (j : J) => CategoryStruct.comp (eqToHom ) (CategoryStruct.comp ((s.app j).map f) (eqToHom )))
          @[simp]

          Auxiliary definition: the proposed cone is a limit cone.

          Equations
          Instances For

            The category of small categories has all small limits.