The category of quivers #
The category of (bundled) quivers, and the free/forgetful adjunction between Cat
and Quiv
.
Category of quivers.
Equations
Instances For
Equations
- CategoryTheory.Quiv.instCoeSortType = { coe := CategoryTheory.Bundled.α }
Equations
The forgetful functor from categories to quivers.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.Quiv.forget_map
{X✝ Y✝ : CategoryTheory.Cat}
(F : X✝ ⟶ Y✝)
:
CategoryTheory.Quiv.forget.map F = F.toPrefunctor
The identity in the category of quivers equals the identity prefunctor.
theorem
CategoryTheory.Quiv.comp_eq_comp
{X Y Z : CategoryTheory.Quiv}
(F : X ⟶ Y)
(G : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp F G = F ⋙q G
Composition in the category of quivers equals prefunctor composition.
The functor sending each quiver to its path category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.Cat.free_map_map
{X✝ Y✝ : CategoryTheory.Quiv}
(F : X✝ ⟶ Y✝)
{X✝¹ Y✝¹ : ↑((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths ↑V)) X✝)}
(f : X✝¹ ⟶ Y✝¹)
:
(CategoryTheory.Cat.free.map F).map f = Prefunctor.mapPath F f
@[simp]
theorem
CategoryTheory.Cat.free_map_obj
{X✝ Y✝ : CategoryTheory.Quiv}
(F : X✝ ⟶ Y✝)
(X : ↑((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths ↑V)) X✝))
:
(CategoryTheory.Cat.free.map F).obj X = F.obj X
An isomorphism of quivers defines an equivalence on carrier types.
Equations
- CategoryTheory.Quiv.equivOfIso e = { toFun := e.hom.obj, invFun := e.inv.obj, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Quiv.equivOfIso_symm_apply
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
(a✝ : ↑W)
:
(CategoryTheory.Quiv.equivOfIso e).symm a✝ = e.inv.obj a✝
@[simp]
theorem
CategoryTheory.Quiv.equivOfIso_apply
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
(a✝ : ↑V)
:
(CategoryTheory.Quiv.equivOfIso e) a✝ = e.hom.obj a✝
@[simp]
theorem
CategoryTheory.Quiv.inv_obj_hom_obj_of_iso
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
(X : ↑V)
:
e.inv.obj (e.hom.obj X) = X
@[simp]
theorem
CategoryTheory.Quiv.hom_obj_inv_obj_of_iso
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
(Y : ↑W)
:
e.hom.obj (e.inv.obj Y) = Y
theorem
CategoryTheory.Quiv.hom_map_inv_map_of_iso
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
{X Y : ↑W}
(f : X ⟶ Y)
:
e.hom.map (e.inv.map f) = Quiver.homOfEq f ⋯ ⋯
theorem
CategoryTheory.Quiv.inv_map_hom_map_of_iso
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
{X Y : ↑V}
(f : X ⟶ Y)
:
e.inv.map (e.hom.map f) = Quiver.homOfEq f ⋯ ⋯
An isomorphism of quivers defines an equivalence on hom types.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Quiv.homEquivOfIso_apply
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
{X Y : ↑V}
(f : X ⟶ Y)
:
(CategoryTheory.Quiv.homEquivOfIso e) f = e.hom.map f
@[simp]
theorem
CategoryTheory.Quiv.homEquivOfIso_symm_apply
{V W : CategoryTheory.Quiv}
(e : V ≅ W)
{X Y : ↑V}
(g : e.hom.obj X ⟶ e.hom.obj Y)
:
(CategoryTheory.Quiv.homEquivOfIso e).symm g = Quiver.homOfEq (e.inv.map g) ⋯ ⋯
@[simp]
theorem
CategoryTheory.Quiv.homOfEq_map_homOfEq
{V W : Type u}
[Quiver V]
[Quiver W]
(e : V ≃ W)
(he : (X Y : V) → (X ⟶ Y) ≃ (e X ⟶ e Y))
{X Y : V}
(f : X ⟶ Y)
{X' Y' : V}
(hX : X = X')
(hY : Y = Y')
{X'' Y'' : W}
(hX' : e X' = X'')
(hY' : e Y' = Y'')
:
Quiver.homOfEq ((he X' Y') (Quiver.homOfEq f hX hY)) hX' hY' = Quiver.homOfEq ((he X Y) f) ⋯ ⋯
def
CategoryTheory.Quiv.lift
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
:
Any prefunctor into a category lifts to a functor from the path category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Quiv.lift_map
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
{X✝ Y✝ : CategoryTheory.Paths V}
(f : X✝ ⟶ Y✝)
:
(CategoryTheory.Quiv.lift F).map f = CategoryTheory.composePath (F.mapPath f)
@[simp]
theorem
CategoryTheory.Quiv.lift_obj
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
(X : CategoryTheory.Paths V)
:
(CategoryTheory.Quiv.lift F).obj X = F.obj X
The adjunction between forming the free category on a quiver, and forgetting a category to a quiver.
Equations
- One or more equations did not get rendered due to their size.