Documentation

Mathlib.CategoryTheory.Category.Quiv

The category of quivers #

The category of (bundled) quivers, and the free/forgetful adjunction between Cat and Quiv.

def CategoryTheory.Quiv :
Type (max (u + 1) u (v + 1))

Category of quivers.

Equations
Instances For
    Equations
    • C.str' = C.str

    Construct a bundled Quiv from the underlying type and the typeclass.

    Equations
    Instances For

      The forgetful functor from categories to quivers.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Quiv.forget_map {X✝ Y✝ : CategoryTheory.Cat} (F : X✝ Y✝) :
        CategoryTheory.Quiv.forget.map F = F.toPrefunctor

        The identity in the category of quivers equals the identity prefunctor.

        Composition in the category of quivers equals prefunctor composition.

        The functor sending each quiver to its path category.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Cat.free_map_map {X✝ Y✝ : CategoryTheory.Quiv} (F : X✝ Y✝) {X✝¹ Y✝¹ : ((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths V)) X✝)} (f : X✝¹ Y✝¹) :
          @[simp]
          theorem CategoryTheory.Cat.free_map_obj {X✝ Y✝ : CategoryTheory.Quiv} (F : X✝ Y✝) (X : ((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths V)) X✝)) :
          (CategoryTheory.Cat.free.map F).obj X = F.obj X

          An isomorphism of quivers defines an equivalence on carrier types.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Quiv.equivOfIso_symm_apply {V W : CategoryTheory.Quiv} (e : V W) (a✝ : W) :
            (CategoryTheory.Quiv.equivOfIso e).symm a✝ = e.inv.obj a✝
            @[simp]
            theorem CategoryTheory.Quiv.equivOfIso_apply {V W : CategoryTheory.Quiv} (e : V W) (a✝ : V) :
            (CategoryTheory.Quiv.equivOfIso e) a✝ = e.hom.obj a✝
            @[simp]
            theorem CategoryTheory.Quiv.inv_obj_hom_obj_of_iso {V W : CategoryTheory.Quiv} (e : V W) (X : V) :
            e.inv.obj (e.hom.obj X) = X
            @[simp]
            theorem CategoryTheory.Quiv.hom_obj_inv_obj_of_iso {V W : CategoryTheory.Quiv} (e : V W) (Y : W) :
            e.hom.obj (e.inv.obj Y) = Y
            theorem CategoryTheory.Quiv.hom_map_inv_map_of_iso {V W : CategoryTheory.Quiv} (e : V W) {X Y : W} (f : X Y) :
            e.hom.map (e.inv.map f) = Quiver.homOfEq f
            theorem CategoryTheory.Quiv.inv_map_hom_map_of_iso {V W : CategoryTheory.Quiv} (e : V W) {X Y : V} (f : X Y) :
            e.inv.map (e.hom.map f) = Quiver.homOfEq f
            def CategoryTheory.Quiv.homEquivOfIso {V W : CategoryTheory.Quiv} (e : V W) {X Y : V} :
            (X Y) (e.hom.obj X e.hom.obj Y)

            An isomorphism of quivers defines an equivalence on hom types.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Quiv.homEquivOfIso_apply {V W : CategoryTheory.Quiv} (e : V W) {X Y : V} (f : X Y) :
              @[simp]
              theorem CategoryTheory.Quiv.homEquivOfIso_symm_apply {V W : CategoryTheory.Quiv} (e : V W) {X Y : V} (g : e.hom.obj X e.hom.obj Y) :
              (CategoryTheory.Quiv.homEquivOfIso e).symm g = Quiver.homOfEq (e.inv.map g)
              @[simp]
              theorem CategoryTheory.Quiv.homOfEq_map_homOfEq {V W : Type u} [Quiver V] [Quiver W] (e : V W) (he : (X Y : V) → (X Y) (e X e Y)) {X Y : V} (f : X Y) {X' Y' : V} (hX : X = X') (hY : Y = Y') {X'' Y'' : W} (hX' : e X' = X'') (hY' : e Y' = Y'') :
              Quiver.homOfEq ((he X' Y') (Quiver.homOfEq f hX hY)) hX' hY' = Quiver.homOfEq ((he X Y) f)
              def CategoryTheory.Quiv.isoOfEquiv {V W : Type u} [Quiver V] [Quiver W] (e : V W) (he : (X Y : V) → (X Y) (e X e Y)) :

              Compatible equivalences of types and hom-types induce an isomorphism of quivers.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Any prefunctor into a category lifts to a functor from the path category.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Quiv.lift_map {V : Type u} [Quiver V] {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (F : V ⥤q C) {X✝ Y✝ : CategoryTheory.Paths V} (f : X✝ Y✝) :

                  The adjunction between forming the free category on a quiver, and forgetting a category to a quiver.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For