Documentation

Mathlib.CategoryTheory.Category.Quiv

The category of quivers #

The category of (bundled) quivers, and the free/forgetful adjunction between Cat and Quiv.

def CategoryTheory.Quiv :
Type (max (u + 1) u (v + 1))

Category of quivers.

Equations
Instances For
    instance CategoryTheory.Quiv.str' (C : Quiv) :
    Quiver C
    Equations
    • C.str' = C.str

    Construct a bundled Quiv from the underlying type and the typeclass.

    Equations
    Instances For

      The forgetful functor from categories to quivers.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Quiv.forget_obj (C : Cat) :
        forget.obj C = of C
        @[simp]
        theorem CategoryTheory.Quiv.forget_map {X✝ Y✝ : Cat} (F : X✝ Y✝) :
        forget.map F = F.toPrefunctor

        The identity in the category of quivers equals the identity prefunctor.

        theorem CategoryTheory.Quiv.comp_eq_comp {X Y Z : Quiv} (F : X Y) (G : Y Z) :

        Composition in the category of quivers equals prefunctor composition.

        The functor sending each quiver to its path category.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Cat.free_obj (V : Quiv) :
          free.obj V = of (Paths V)
          @[simp]
          theorem CategoryTheory.Cat.free_map_map {X✝ Y✝ : Quiv} (F : X✝ Y✝) {X✝¹ Y✝¹ : ((fun (V : Quiv) => of (Paths V)) X✝)} (f : X✝¹ Y✝¹) :
          (free.map F).map f = Prefunctor.mapPath F f
          @[simp]
          theorem CategoryTheory.Cat.free_map_obj {X✝ Y✝ : Quiv} (F : X✝ Y✝) (X : ((fun (V : Quiv) => of (Paths V)) X✝)) :
          (free.map F).obj X = F.obj X
          def CategoryTheory.Quiv.equivOfIso {V W : Quiv} (e : V W) :
          V W

          An isomorphism of quivers defines an equivalence on carrier types.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Quiv.equivOfIso_symm_apply {V W : Quiv} (e : V W) (a✝ : W) :
            (equivOfIso e).symm a✝ = e.inv.obj a✝
            @[simp]
            theorem CategoryTheory.Quiv.equivOfIso_apply {V W : Quiv} (e : V W) (a✝ : V) :
            (equivOfIso e) a✝ = e.hom.obj a✝
            @[simp]
            theorem CategoryTheory.Quiv.inv_obj_hom_obj_of_iso {V W : Quiv} (e : V W) (X : V) :
            e.inv.obj (e.hom.obj X) = X
            @[simp]
            theorem CategoryTheory.Quiv.hom_obj_inv_obj_of_iso {V W : Quiv} (e : V W) (Y : W) :
            e.hom.obj (e.inv.obj Y) = Y
            theorem CategoryTheory.Quiv.hom_map_inv_map_of_iso {V W : Quiv} (e : V W) {X Y : W} (f : X Y) :
            e.hom.map (e.inv.map f) = Quiver.homOfEq f
            theorem CategoryTheory.Quiv.inv_map_hom_map_of_iso {V W : Quiv} (e : V W) {X Y : V} (f : X Y) :
            e.inv.map (e.hom.map f) = Quiver.homOfEq f
            def CategoryTheory.Quiv.homEquivOfIso {V W : Quiv} (e : V W) {X Y : V} :
            (X Y) (e.hom.obj X e.hom.obj Y)

            An isomorphism of quivers defines an equivalence on hom types.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Quiv.homEquivOfIso_apply {V W : Quiv} (e : V W) {X Y : V} (f : X Y) :
              (homEquivOfIso e) f = e.hom.map f
              @[simp]
              theorem CategoryTheory.Quiv.homEquivOfIso_symm_apply {V W : Quiv} (e : V W) {X Y : V} (g : e.hom.obj X e.hom.obj Y) :
              (homEquivOfIso e).symm g = Quiver.homOfEq (e.inv.map g)
              @[simp]
              theorem CategoryTheory.Quiv.homOfEq_map_homOfEq {V W : Type u} [Quiver V] [Quiver W] (e : V W) (he : (X Y : V) → (X Y) (e X e Y)) {X Y : V} (f : X Y) {X' Y' : V} (hX : X = X') (hY : Y = Y') {X'' Y'' : W} (hX' : e X' = X'') (hY' : e Y' = Y'') :
              Quiver.homOfEq ((he X' Y') (Quiver.homOfEq f hX hY)) hX' hY' = Quiver.homOfEq ((he X Y) f)
              def CategoryTheory.Quiv.isoOfEquiv {V W : Type u} [Quiver V] [Quiver W] (e : V W) (he : (X Y : V) → (X Y) (e X e Y)) :
              of V of W

              Compatible equivalences of types and hom-types induce an isomorphism of quivers.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def CategoryTheory.Quiv.lift {V : Type u} [Quiver V] {C : Type u_1} [Category.{u_2, u_1} C] (F : V ⥤q C) :

                Any prefunctor into a category lifts to a functor from the path category.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Quiv.lift_map {V : Type u} [Quiver V] {C : Type u_1} [Category.{u_2, u_1} C] (F : V ⥤q C) {X✝ Y✝ : Paths V} (f : X✝ Y✝) :
                  (lift F).map f = composePath (F.mapPath f)
                  @[simp]
                  theorem CategoryTheory.Quiv.lift_obj {V : Type u} [Quiver V] {C : Type u_1} [Category.{u_2, u_1} C] (F : V ⥤q C) (X : Paths V) :
                  (lift F).obj X = F.obj X

                  The adjunction between forming the free category on a quiver, and forgetting a category to a quiver.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For