The category of two-pointed types #
This defines TwoP
, the category of two-pointed types.
References #
- [nLab, coalgebra of the real interval] (https://ncatlab.org/nlab/show/coalgebra+of+the+real+interval)
The category of two-pointed types.
- X : Type u
The underlying type of a two-pointed type.
- toTwoPointing : TwoPointing self.X
The two points of a bipointed type, bundled together as a pair of distinct elements.
Instances For
Equations
- TwoP.instCoeSortType = { coe := TwoP.X }
@[simp]
Equations
- TwoP.instInhabited = { default := TwoP.of TwoPointing.bool }
Turns a two-pointed type into a bipointed type, by forgetting that the pointed elements are distinct.
Equations
- X.toBipointed = X.toTwoPointing.Bipointed
Instances For
Swaps the pointed elements of a two-pointed type. TwoPointing.swap
as a functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
TwoP.swapEquiv_unitIso_hom_app_toFun
(X : TwoP)
(a : ((CategoryTheory.Functor.id TwoP).obj X).toBipointed.X)
:
@[simp]
@[simp]
@[simp]
theorem
TwoP.swapEquiv_unitIso_inv_app_toFun
(X : TwoP)
(a : ((CategoryTheory.Functor.id TwoP).obj X).toBipointed.X)
:
@[simp]
@[simp]
theorem
pointedToTwoPFst_map_toFun
{X✝ Y✝ : Pointed}
(f : X✝ ⟶ Y✝)
(a✝ : Option X✝.X)
:
(pointedToTwoPFst.map f).toFun a✝ = Option.map f.toFun a✝
@[simp]
theorem
pointedToTwoPFst_obj_toTwoPointing_toProd
(X : Pointed)
:
(pointedToTwoPFst.obj X).toTwoPointing.toProd = (some X.point, none)
@[simp]
theorem
pointedToTwoPSnd_map_toFun
{X✝ Y✝ : Pointed}
(f : X✝ ⟶ Y✝)
(a✝ : Option X✝.X)
:
(pointedToTwoPSnd.map f).toFun a✝ = Option.map f.toFun a✝
@[simp]
theorem
pointedToTwoPSnd_obj_toTwoPointing_toProd
(X : Pointed)
:
(pointedToTwoPSnd.obj X).toTwoPointing.toProd = (none, some X.point)
@[simp]
@[simp]
@[simp]
@[simp]
Adding a second point is left adjoint to forgetting the second point.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Adding a first point is left adjoint to forgetting the first point.
Equations
- One or more equations did not get rendered due to their size.