The center of a category #
Given a category C, we introduce an abbreviation CatCenter C for
the center of the category C, which is End (𝟭 C), the
type of endomorphisms of the identity functor of C.
References #
- https://ncatlab.org/nlab/show/center+of+a+category
@[reducible, inline]
The center of a category C is the type End (𝟭 C) of the endomorphisms
of the identify functor of C.
Equations
Instances For
@[reducible, inline]
The action of the center of a category on an object. (This is necessary as
NatTrans.app x X is syntactically an endomorphism of (𝟭 C).obj X
rather than of X.)
Instances For
theorem
CategoryTheory.CatCenter.ext
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(h : ∀ (X : C), x.app X = y.app X)
:
theorem
CategoryTheory.CatCenter.naturality
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.CatCenter.naturality_assoc
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X ⟶ Y)
{Z : C}
(h : Y ⟶ Z)
:
CategoryStruct.comp f (CategoryStruct.comp (z.app Y) h) = CategoryStruct.comp (z.app X) (CategoryStruct.comp f h)
theorem
CategoryTheory.CatCenter.mul_app'
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app'_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (y.app X) (CategoryStruct.comp (x.app X) h)
theorem
CategoryTheory.CatCenter.mul_app
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
:
theorem
CategoryTheory.CatCenter.mul_app_assoc
{C : Type u}
[Category.{v, u} C]
(x y : CatCenter C)
(X : C)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp ((x * y).app X) h = CategoryStruct.comp (x.app X) (CategoryStruct.comp (y.app X) h)
Equations
- CategoryTheory.CatCenter.instSMulHom = { smul := fun (z : CategoryTheory.CatCenter C) (f : X ⟶ Y) => CategoryTheory.CategoryStruct.comp f (z.app Y) }
theorem
CategoryTheory.CatCenter.smul_eq
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.CatCenter.smul_eq'
{C : Type u}
[Category.{v, u} C]
(z : CatCenter C)
{X Y : C}
(f : X ⟶ Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
{Z : C}
(h : Y ⟶ Z)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq'
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_hom_eq'_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
{Z : C}
(h : Y ⟶ Z)
:
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp (z • f).inv h = CategoryStruct.comp f.inv (CategoryStruct.comp ((↑z⁻¹).app X) h)
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq'
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
:
theorem
CategoryTheory.CatCenter.smul_iso_inv_eq'_assoc
{C : Type u}
[Category.{v, u} C]
(z : (CatCenter C)ˣ)
{X Y : C}
(f : X ≅ Y)
{Z : C}
(h : X ⟶ Z)
:
CategoryStruct.comp (z • f).inv h = CategoryStruct.comp ((↑z⁻¹).app Y) (CategoryStruct.comp f.inv h)