Documentation

Mathlib.CategoryTheory.Center.Basic

The center of a category #

Given a category C, we introduce an abbreviation CatCenter C for the center of the category C, which is End (𝟭 C), the type of endomorphisms of the identity functor of C.

References #

@[reducible, inline]
abbrev CategoryTheory.CatCenter (C : Type u) [Category.{v, u} C] :
Type (max u v)

The center of a category C is the type End (𝟭 C) of the endomorphisms of the identify functor of C.

Equations
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.CatCenter.app {C : Type u} [Category.{v, u} C] (x : CatCenter C) (X : C) :
    X X

    The action of the center of a category on an object. (This is necessary as NatTrans.app x X is syntactically an endomorphism of (𝟭 C).obj X rather than of X.)

    Equations
    Instances For
      theorem CategoryTheory.CatCenter.ext {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (h : ∀ (X : C), x.app X = y.app X) :
      x = y
      theorem CategoryTheory.CatCenter.ext_iff {C : Type u} [Category.{v, u} C] {x y : CatCenter C} :
      x = y ∀ (X : C), x.app X = y.app X
      theorem CategoryTheory.CatCenter.mul_app' {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) :
      (x * y).app X = CategoryStruct.comp (y.app X) (x.app X)
      theorem CategoryTheory.CatCenter.mul_app'_assoc {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) {Z : C} (h : X Z) :
      theorem CategoryTheory.CatCenter.mul_app {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) :
      (x * y).app X = CategoryStruct.comp (x.app X) (y.app X)
      theorem CategoryTheory.CatCenter.mul_app_assoc {C : Type u} [Category.{v, u} C] (x y : CatCenter C) (X : C) {Z : C} (h : X Z) :
      theorem CategoryTheory.CatCenter.smul_eq {C : Type u} [Category.{v, u} C] (z : CatCenter C) {X Y : C} (f : X Y) :
      theorem CategoryTheory.CatCenter.smul_eq' {C : Type u} [Category.{v, u} C] (z : CatCenter C) {X Y : C} (f : X Y) :
      Equations
      theorem CategoryTheory.CatCenter.smul_iso_hom_eq {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) :
      (z f).hom = CategoryStruct.comp f.hom ((↑z).app Y)
      theorem CategoryTheory.CatCenter.smul_iso_hom_eq_assoc {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) {Z : C} (h : Y Z) :
      theorem CategoryTheory.CatCenter.smul_iso_hom_eq' {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) :
      (z f).hom = CategoryStruct.comp ((↑z).app X) f.hom
      theorem CategoryTheory.CatCenter.smul_iso_hom_eq'_assoc {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) {Z : C} (h : Y Z) :
      theorem CategoryTheory.CatCenter.smul_iso_inv_eq {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) :
      theorem CategoryTheory.CatCenter.smul_iso_inv_eq' {C : Type u} [Category.{v, u} C] (z : (CatCenter C)ˣ) {X Y : C} (f : X Y) :