Functor categories are monoidal closed #
Let C
be a monoidal closed category. Let J
be a category. In this file,
we obtain that the category J ⥤ C
is monoidal closed if C
has suitable
limits.
noncomputable def
CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
{F₁ F₂ F₃ : Functor J C}
:
(MonoidalCategoryStruct.tensorObj F₁ F₂ ⟶ F₃) ≃ (F₂ ⟶ Enriched.FunctorCategory.functorEnrichedHom C F₁ F₃)
The bijection (F₁ ⊗ F₂ ⟶ F₃) ≃ (F₂ ⟶ functorEnrichedHom C F₁ F₃)
when F₁
, F₂
and F₃
are functors J ⥤ C
, and C
is monoidal closed.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_two_symm
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
{F₁ F₂ F₂' F₃ : Functor J C}
(f₂ : F₂ ⟶ F₂')
(g : F₂' ⟶ Enriched.FunctorCategory.functorEnrichedHom C F₁ F₃)
:
homEquiv.symm (CategoryStruct.comp f₂ g) = CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft F₁ f₂) (homEquiv.symm g)
theorem
CategoryTheory.MonoidalClosed.FunctorCategory.homEquiv_naturality_three
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
{F₁ F₂ F₃ F₃' : Functor J C}
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasEnrichedHom C F₁ F₂]
(f : MonoidalCategoryStruct.tensorObj F₁ F₂ ⟶ F₃)
(f₃ : F₃ ⟶ F₃')
:
homEquiv (CategoryStruct.comp f f₃) = CategoryStruct.comp (homEquiv f)
(CategoryStruct.comp (MonoidalCategoryStruct.rightUnitor (Enriched.FunctorCategory.functorEnrichedHom C F₁ F₃)).inv
(CategoryStruct.comp
(MonoidalCategoryStruct.whiskerLeft (Enriched.FunctorCategory.functorEnrichedHom C F₁ F₃)
((Enriched.FunctorCategory.functorHomEquiv C) f₃))
(Enriched.FunctorCategory.functorEnrichedComp C F₁ F₃ F₃')))
noncomputable def
CategoryTheory.MonoidalClosed.FunctorCategory.adj
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasEnrichedHom C F₁ F₂]
(F : Functor J C)
:
When C
is monoidal closed and has suitable limits,
then for any F : J ⥤ C
, tensorLeft F
has a right adjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.MonoidalClosed.FunctorCategory.closed
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasEnrichedHom C F₁ F₂]
(F : Functor J C)
:
Closed F
When C
is monoidal closed and has suitable limits,
then for any F : J ⥤ C
, tensorLeft F
has a right adjoint.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.MonoidalClosed.FunctorCategory.monoidalClosed
{C : Type u₁}
[Category.{v₁, u₁} C]
[MonoidalCategory C]
[MonoidalClosed C]
{J : Type u₂}
[Category.{v₂, u₂} J]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasFunctorEnrichedHom C F₁ F₂]
[∀ (F₁ F₂ : Functor J C), Enriched.FunctorCategory.HasEnrichedHom C F₁ F₂]
:
MonoidalClosed (Functor J C)
If C
is monoidal closed and has suitable limits, the functor
category J ⥤ C
is monoidal closed.