Documentation

Mathlib.CategoryTheory.Enriched.FunctorCategory

Functor categories are enriched #

If C is a V-enriched ordinary category, then J ⥤ C is also a V-enriched ordinary category, provided C has suitable limits.

Given two functors F₁ and F₂ from a category J to a V-enriched ordinary category C, this is the diagram Jᵒᵖ ⥤ J ⥤ V whose end shall be the V-morphisms in J ⥤ V from F₁ to F₂.

Equations
Instances For
    @[reducible, inline]

    The V-enriched hom from F₁ to F₂ when F₁ and F₂ are functors J ⥤ C and C is a V-enriched category.

    Equations
    Instances For
      @[reducible, inline]

      The projection enrichedHom V F₁ F₂ ⟶ F₁.obj j ⟶[V] F₂.obj j in the category V for any j : J when F₁ and F₂ are functors J ⥤ C and C is a V-enriched category.

      Equations
      Instances For
        theorem CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition_assoc (V : Type u₁) [CategoryTheory.Category.{v₁, u₁} V] [CategoryTheory.MonoidalCategory V] {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {J : Type u₃} [CategoryTheory.Category.{v₃, u₃} J] [CategoryTheory.EnrichedOrdinaryCategory V C] (F₁ F₂ : CategoryTheory.Functor J C) [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₂] {i j : J} (f : i j) {Z : V} (h : CategoryTheory.EnrichedCategory.Hom (F₁.obj i) (F₂.obj j) Z) :

        Given functors F₁ and F₂ in J ⥤ C, where C is a V-enriched ordinary category, this is the isomorphism (F₁ ⟶ F₂) ≃ (𝟙_ V ⟶ enrichedHom V F₁ F₂) in the category V.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Enriched.FunctorCategory.enriched_assoc (V : Type u₁) [CategoryTheory.Category.{v₁, u₁} V] [CategoryTheory.MonoidalCategory V] {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {J : Type u₃} [CategoryTheory.Category.{v₃, u₃} J] [CategoryTheory.EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ F₄ : CategoryTheory.Functor J C) [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₂] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₃] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₄] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₂ F₃] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₂ F₄] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₃ F₄] :
          theorem CategoryTheory.Enriched.FunctorCategory.enriched_assoc_assoc (V : Type u₁) [CategoryTheory.Category.{v₁, u₁} V] [CategoryTheory.MonoidalCategory V] {C : Type u₂} [CategoryTheory.Category.{v₂, u₂} C] {J : Type u₃} [CategoryTheory.Category.{v₃, u₃} J] [CategoryTheory.EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ F₄ : CategoryTheory.Functor J C) [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₂] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₃] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₁ F₄] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₂ F₃] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₂ F₄] [CategoryTheory.Enriched.FunctorCategory.HasEnrichedHom V F₃ F₄] {Z : V} (h : CategoryTheory.Enriched.FunctorCategory.enrichedHom V F₁ F₄ Z) :

          If C is a V-enriched ordinary category, and C has suitable limits, then J ⥤ C is also a V-enriched ordinary category.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For