Documentation

Mathlib.CategoryTheory.Enriched.FunctorCategory

Functor categories are enriched #

If C is a V-enriched ordinary category, then J ⥤ C is also a V-enriched ordinary category, provided C has suitable limits.

Given two functors F₁ and F₂ from a category J to a V-enriched ordinary category C, this is the diagram Jᵒᵖ ⥤ J ⥤ V whose end shall be the V-morphisms in J ⥤ V from F₁ to F₂.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Enriched.FunctorCategory.diagram_obj_obj (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) (X : Jᵒᵖ) (X✝ : J) :
    ((diagram V F₁ F₂).obj X).obj X✝ = EnrichedCategory.Hom (F₁.obj (Opposite.unop X)) (F₂.obj X✝)
    @[simp]
    theorem CategoryTheory.Enriched.FunctorCategory.diagram_obj_map (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) (X : Jᵒᵖ) {X✝ Y✝ : J} (f : X✝ Y✝) :
    ((diagram V F₁ F₂).obj X).map f = eHomWhiskerLeft V (F₁.obj (Opposite.unop X)) (F₂.map f)
    @[simp]
    theorem CategoryTheory.Enriched.FunctorCategory.diagram_map_app (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) {X✝ Y✝ : Jᵒᵖ} (f : X✝ Y✝) (X : J) :
    ((diagram V F₁ F₂).map f).app X = eHomWhiskerRight V (F₁.map f.unop) (F₂.obj X)
    @[reducible, inline]

    The V-enriched hom from F₁ to F₂ when F₁ and F₂ are functors J ⥤ C and C is a V-enriched category.

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev CategoryTheory.Enriched.FunctorCategory.enrichedHomπ (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasEnrichedHom V F₁ F₂] (j : J) :
      enrichedHom V F₁ F₂ EnrichedCategory.Hom (F₁.obj j) (F₂.obj j)

      The projection enrichedHom V F₁ F₂ ⟶ F₁.obj j ⟶[V] F₂.obj j in the category V for any j : J when F₁ and F₂ are functors J ⥤ C and C is a V-enriched category.

      Equations
      Instances For
        theorem CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasEnrichedHom V F₁ F₂] {i j : J} (f : i j) :
        CategoryStruct.comp (enrichedHomπ V F₁ F₂ i) (CategoryStruct.comp (MonoidalCategoryStruct.rightUnitor (EnrichedCategory.Hom (F₁.obj i) (F₂.obj i))).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom (F₁.obj i) (F₂.obj i)) ((eHomEquiv V) (F₂.map f))) (eComp V (F₁.obj i) (F₂.obj i) (F₂.obj j)))) = CategoryStruct.comp (enrichedHomπ V F₁ F₂ j) (CategoryStruct.comp (MonoidalCategoryStruct.leftUnitor (EnrichedCategory.Hom (F₁.obj j) (F₂.obj j))).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight ((eHomEquiv V) (F₁.map f)) (EnrichedCategory.Hom (F₁.obj j) (F₂.obj j))) (eComp V (F₁.obj i) (F₁.obj j) (F₂.obj j))))
        theorem CategoryTheory.Enriched.FunctorCategory.enrichedHom_condition_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasEnrichedHom V F₁ F₂] {i j : J} (f : i j) {Z : V} (h : EnrichedCategory.Hom (F₁.obj i) (F₂.obj j) Z) :
        CategoryStruct.comp (enrichedHomπ V F₁ F₂ i) (CategoryStruct.comp (MonoidalCategoryStruct.rightUnitor (EnrichedCategory.Hom (F₁.obj i) (F₂.obj i))).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerLeft (EnrichedCategory.Hom (F₁.obj i) (F₂.obj i)) ((eHomEquiv V) (F₂.map f))) (CategoryStruct.comp (eComp V (F₁.obj i) (F₂.obj i) (F₂.obj j)) h))) = CategoryStruct.comp (enrichedHomπ V F₁ F₂ j) (CategoryStruct.comp (MonoidalCategoryStruct.leftUnitor (EnrichedCategory.Hom (F₁.obj j) (F₂.obj j))).inv (CategoryStruct.comp (MonoidalCategoryStruct.whiskerRight ((eHomEquiv V) (F₁.map f)) (EnrichedCategory.Hom (F₁.obj j) (F₂.obj j))) (CategoryStruct.comp (eComp V (F₁.obj i) (F₁.obj j) (F₂.obj j)) h)))
        noncomputable def CategoryTheory.Enriched.FunctorCategory.homEquiv (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] {F₁ F₂ : Functor J C} [HasEnrichedHom V F₁ F₂] :
        (F₁ F₂) (𝟙_ V enrichedHom V F₁ F₂)

        Given functors F₁ and F₂ in J ⥤ C, where C is a V-enriched ordinary category, this is the isomorphism (F₁ ⟶ F₂) ≃ (𝟙_ V ⟶ enrichedHom V F₁ F₂) in the category V.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] {F₁ F₂ : Functor J C} [HasEnrichedHom V F₁ F₂] (τ : F₁ F₂) (j : J) :
          CategoryStruct.comp ((homEquiv V) τ) (enrichedHomπ V F₁ F₂ j) = (eHomEquiv V) (τ.app j)
          @[simp]
          theorem CategoryTheory.Enriched.FunctorCategory.homEquiv_apply_π_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] {F₁ F₂ : Functor J C} [HasEnrichedHom V F₁ F₂] (τ : F₁ F₂) (j : J) {Z : V} (h : EnrichedCategory.Hom (F₁.obj j) (F₂.obj j) Z) :

          The identity for the V-enrichment of the category J ⥤ C over V.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Enriched.FunctorCategory.enrichedId_π_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ : Functor J C) [HasEnrichedHom V F₁ F₁] (j : J) {Z : V} (h : ((diagram V F₁ F₁).obj (Opposite.op j)).obj j Z) :
            noncomputable def CategoryTheory.Enriched.FunctorCategory.enrichedComp (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ : Functor J C) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V F₂ F₃] [HasEnrichedHom V F₁ F₃] :

            The composition for the V-enrichment of the category J ⥤ C over V.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Enriched.FunctorCategory.enrichedComp_π (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ : Functor J C) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V F₂ F₃] [HasEnrichedHom V F₁ F₃] (j : J) :
              CategoryStruct.comp (enrichedComp V F₁ F₂ F₃) (Limits.end_.π (diagram V F₁ F₃) j) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (Limits.end_.π (diagram V F₁ F₂) j) (Limits.end_.π (diagram V F₂ F₃) j)) (eComp V (Opposite.unop (F₁.op.obj (Opposite.op j))) (F₂.obj j) (F₃.obj j))
              @[simp]
              theorem CategoryTheory.Enriched.FunctorCategory.enrichedComp_π_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ : Functor J C) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V F₂ F₃] [HasEnrichedHom V F₁ F₃] (j : J) {Z : V} (h : ((diagram V F₁ F₃).obj (Opposite.op j)).obj j Z) :
              CategoryStruct.comp (enrichedComp V F₁ F₂ F₃) (CategoryStruct.comp (Limits.end_.π (diagram V F₁ F₃) j) h) = CategoryStruct.comp (MonoidalCategoryStruct.tensorHom (Limits.end_.π (diagram V F₁ F₂) j) (Limits.end_.π (diagram V F₂ F₃) j)) (CategoryStruct.comp (eComp V (Opposite.unop (F₁.op.obj (Opposite.op j))) (F₂.obj j) (F₃.obj j)) h)
              theorem CategoryTheory.Enriched.FunctorCategory.enriched_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ F₄ : Functor J C) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V F₁ F₃] [HasEnrichedHom V F₁ F₄] [HasEnrichedHom V F₂ F₃] [HasEnrichedHom V F₂ F₄] [HasEnrichedHom V F₃ F₄] :
              theorem CategoryTheory.Enriched.FunctorCategory.enriched_assoc_assoc (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ F₃ F₄ : Functor J C) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V F₁ F₃] [HasEnrichedHom V F₁ F₄] [HasEnrichedHom V F₂ F₃] [HasEnrichedHom V F₂ F₄] [HasEnrichedHom V F₃ F₄] {Z : V} (h : enrichedHom V F₁ F₄ Z) :

              If C is a V-enriched ordinary category, and C has suitable limits, then J ⥤ C is also a V-enriched ordinary category.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[reducible, inline]
                noncomputable abbrev CategoryTheory.Enriched.FunctorCategory.precompEnrichedHom (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] {K : Type u₄} [Category.{v₄, u₄} K] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) (G : Functor K J) [HasEnrichedHom V F₁ F₂] [HasEnrichedHom V (G.comp F₁) (G.comp F₂)] :
                enrichedHom V F₁ F₂ enrichedHom V (G.comp F₁) (G.comp F₂)

                If F₁ and F₂ are functors J ⥤ C, and G : K ⥤ J, then this is the induced morphism enrichedHom V F₁ F₂ ⟶ enrichedHom V (G ⋙ F₁) (G ⋙ F₂) in V when C is a category enriched in V.

                Equations
                Instances For
                  @[reducible, inline]

                  Given functors F₁ and F₂ in J ⥤ C, where C is a category enriched in V, this condition allows the definition of functorEnrichedHom V F₁ F₂ : J ⥤ V.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    instance CategoryTheory.Enriched.FunctorCategory.instHasEnrichedHomUnderCompMapForget (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasFunctorEnrichedHom V F₁ F₂] {j j' : J} (f : j j') :
                    HasEnrichedHom V ((Under.map f).comp ((Under.forget j).comp F₁)) ((Under.map f).comp ((Under.forget j).comp F₂))

                    Given functors F₁ and F₂ in J ⥤ C, where C is a category enriched in V, this is the enriched hom functor from F₁ to F₂ in J ⥤ V.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom_map (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasFunctorEnrichedHom V F₁ F₂] {X✝ Y✝ : J} (f : X✝ Y✝) :
                      (functorEnrichedHom V F₁ F₂).map f = precompEnrichedHom V ((Under.forget X✝).comp F₁) ((Under.forget X✝).comp F₂) (Under.map f)
                      @[simp]
                      theorem CategoryTheory.Enriched.FunctorCategory.functorEnrichedHom_obj (V : Type u₁) [Category.{v₁, u₁} V] [MonoidalCategory V] {C : Type u₂} [Category.{v₂, u₂} C] {J : Type u₃} [Category.{v₃, u₃} J] [EnrichedOrdinaryCategory V C] (F₁ F₂ : Functor J C) [HasFunctorEnrichedHom V F₁ F₂] (j : J) :
                      (functorEnrichedHom V F₁ F₂).obj j = enrichedHom V ((Under.forget j).comp F₁) ((Under.forget j).comp F₂)

                      The (limit) cone expressing that the limit of functorEnrichedHom V F₁ F₂ is enrichedHom V F₁ F₂.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        Auxiliary definition for Enriched.FunctorCategory.isLimitConeFunctorEnrichedHom.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For