Documentation

Mathlib.CategoryTheory.Limits.Shapes.End

Ends and coends #

In this file, given a functor F : Jᵒᵖ ⥤ J ⥤ C, we define its end end_ F, which is a suitable multiequalizer of the objects (F.obj (op j)).obj j for all j : J. For this shape of limits, cones are named wedges: the corresponding type is Wedge F.

References #

TODO #

Given F : Jᵒᵖ ⥤ J ⥤ C, this is the multicospan index which shall be used to define the end of F.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    Given F : Jᵒᵖ ⥤ J ⥤ C, a wedge for F is a type of cones (specifically the type of multiforks for multicospanIndexEnd F): the point of universal of these wedges shall be the end of F.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Limits.Wedge.mk_pt {J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jᵒᵖ (CategoryTheory.Functor J C)} (pt : C) (π : (j : J) → pt (F.obj (Opposite.op j)).obj j) (hπ : ∀ ⦃i j : J⦄ (f : i j), CategoryTheory.CategoryStruct.comp (π i) ((F.obj (Opposite.op i)).map f) = CategoryTheory.CategoryStruct.comp (π j) ((F.map f.op).app j)) :
      @[reducible, inline]
      abbrev CategoryTheory.Limits.Wedge.mk {J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jᵒᵖ (CategoryTheory.Functor J C)} (pt : C) (π : (j : J) → pt (F.obj (Opposite.op j)).obj j) (hπ : ∀ ⦃i j : J⦄ (f : i j), CategoryTheory.CategoryStruct.comp (π i) ((F.obj (Opposite.op i)).map f) = CategoryTheory.CategoryStruct.comp (π j) ((F.map f.op).app j)) :

      Constructor for wedges.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.Wedge.mk_ι {J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jᵒᵖ (CategoryTheory.Functor J C)} (pt : C) (π : (j : J) → pt (F.obj (Opposite.op j)).obj j) (hπ : ∀ ⦃i j : J⦄ (f : i j), CategoryTheory.CategoryStruct.comp (π i) ((F.obj (Opposite.op i)).map f) = CategoryTheory.CategoryStruct.comp (π j) ((F.map f.op).app j)) (j : J) :
        def CategoryTheory.Limits.Wedge.IsLimit.lift {J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jᵒᵖ (CategoryTheory.Functor J C)} {c : CategoryTheory.Limits.Wedge F} (hc : CategoryTheory.Limits.IsLimit c) {X : C} (f : (j : J) → X (F.obj (Opposite.op j)).obj j) (hf : ∀ ⦃i j : J⦄ (g : i j), CategoryTheory.CategoryStruct.comp (f i) ((F.obj (Opposite.op i)).map g) = CategoryTheory.CategoryStruct.comp (f j) ((F.map g.op).app j)) :
        X c.pt

        Construct a morphism to the end from its universal property.

        Equations
        Instances For
          @[reducible, inline]

          Given F : Jᵒᵖ ⥤ J ⥤ C, this property asserts the existence of the end of F.

          Equations
          Instances For

            Given F : Jᵒᵖ ⥤ J ⥤ C, this is the projection end_ F ⟶ (F.obj (op j)).obj j for any j : J.

            Equations
            Instances For
              noncomputable def CategoryTheory.Limits.end_.lift {J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jᵒᵖ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {X : C} (f : (j : J) → X (F.obj (Opposite.op j)).obj j) (hf : ∀ ⦃i j : J⦄ (g : i j), CategoryTheory.CategoryStruct.comp (f i) ((F.obj (Opposite.op i)).map g) = CategoryTheory.CategoryStruct.comp (f j) ((F.map g.op).app j)) :

              Constructor for morphisms to the end of a functor.

              Equations
              Instances For