Documentation

Mathlib.CategoryTheory.Limits.Shapes.Multiequalizer

Multi-(co)equalizers #

A multiequalizer is an equalizer of two morphisms between two products. Since both products and equalizers are limits, such an object is again a limit. This file provides the diagram whose limit is indeed such an object. In fact, it is well-known that any limit can be obtained as a multiequalizer. The dual construction (multicoequalizers) is also provided.

Projects #

Prove that a multiequalizer can be identified with an equalizer between products (and analogously for multicoequalizers).

Prove that the limit of any diagram is a multiequalizer (and similarly for colimits).

structure CategoryTheory.Limits.MulticospanShape :
Type (max (w + 1) (w' + 1))

The shape of a multiequalizer diagram. It involves two types L and R, and two maps RL.

  • L : Type w

    the left type

  • R : Type w'

    the right type

  • fst : self.Rself.L

    the first map RL

  • snd : self.Rself.L

    the second map RL

Instances For

    Given a type ι, this is the shape of multiequalizer diagrams corresponding to situations where we want to equalize two families of maps U i ⟶ V ⟨i, j⟩ and U j ⟶ V ⟨i, j⟩ with i : ι and j : ι.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Limits.MulticospanShape.prod_snd (ι : Type w) (self : ι × ι) :
      (prod ι).snd self = self.2
      @[simp]
      @[simp]
      theorem CategoryTheory.Limits.MulticospanShape.prod_fst (ι : Type w) (self : ι × ι) :
      (prod ι).fst self = self.1
      structure CategoryTheory.Limits.MultispanShape :
      Type (max (w + 1) (w' + 1))

      The shape of a multicoequalizer diagram. It involves two types L and R, and two maps LR.

      • L : Type w

        the left type

      • R : Type w'

        the right type

      • fst : self.Lself.R

        the first map LR

      • snd : self.Lself.R

        the second map LR

      Instances For

        Given a type ι, this is the shape of multicoequalizer diagrams corresponding to situations where we want to coequalize two families of maps V ⟨i, j⟩ ⟶ U i and V ⟨i, j⟩ ⟶ U j with i : ι and j : ι.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Limits.MultispanShape.prod_snd (ι : Type w) (self : ι × ι) :
          (prod ι).snd self = self.2
          @[simp]
          @[simp]
          theorem CategoryTheory.Limits.MultispanShape.prod_fst (ι : Type w) (self : ι × ι) :
          (prod ι).fst self = self.1

          The type underlying the multiequalizer diagram.

          Instances For

            The type underlying the multiecoqualizer diagram.

            Instances For

              Morphisms for WalkingMulticospan.

              Instances For

                Composition of morphisms for WalkingMulticospan.

                Equations
                Instances For

                  Morphisms for WalkingMultispan.

                  Instances For

                    Composition of morphisms for WalkingMultispan.

                    Equations
                    Instances For
                      structure CategoryTheory.Limits.MulticospanIndex (J : MulticospanShape) (C : Type u) [Category.{v, u} C] :
                      Type (max (max (max u v) w) w')

                      This is a structure encapsulating the data necessary to define a Multicospan.

                      Instances For
                        structure CategoryTheory.Limits.MultispanIndex (J : MultispanShape) (C : Type u) [Category.{v, u} C] :
                        Type (max (max (max u v) w) w')

                        This is a structure encapsulating the data necessary to define a Multispan.

                        Instances For

                          The multicospan associated to I : MulticospanIndex.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            Taking the multiequalizer over the multicospan index is equivalent to taking the equalizer over the two morphisms ∏ᶜ I.left ⇉ ∏ᶜ I.right. This is the diagram of the latter.

                            Equations
                            Instances For

                              The multispan associated to I : MultispanIndex.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[reducible, inline]

                                Taking the multicoequalizer over the multispan index is equivalent to taking the coequalizer over the two morphsims ∐ I.left ⇉ ∐ I.right. This is the diagram of the latter.

                                Equations
                                Instances For
                                  @[reducible, inline]
                                  abbrev CategoryTheory.Limits.Multifork {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) :
                                  Type (max (max (max w w') u) v)

                                  A multifork is a cone over a multicospan.

                                  Equations
                                  Instances For
                                    @[reducible, inline]
                                    abbrev CategoryTheory.Limits.Multicofork {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) :
                                    Type (max (max (max w w') u) v)

                                    A multicofork is a cocone over a multispan.

                                    Equations
                                    Instances For

                                      The maps from the cone point of a multifork to the objects on the left.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.Limits.Multifork.hom_comp_ι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : J.L) :
                                        CategoryStruct.comp f.hom (K₂.ι j) = K₁.ι j
                                        @[simp]
                                        theorem CategoryTheory.Limits.Multifork.hom_comp_ι_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K₁ K₂ : Multifork I) (f : K₁ K₂) (j : J.L) {Z : C} (h : I.left j Z) :
                                        def CategoryTheory.Limits.Multifork.ofι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) :

                                        Construct a multifork using a collection ι of morphisms.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Limits.Multifork.ofι_π_app {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) (x : WalkingMulticospan J) :
                                          (ofι I P ι w).π.app x = match x with | WalkingMulticospan.left a => ι a | WalkingMulticospan.right b => CategoryStruct.comp (ι (J.fst b)) (I.fst b)
                                          @[simp]
                                          theorem CategoryTheory.Limits.Multifork.ofι_pt {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) (P : C) (ι : (a : J.L) → P I.left a) (w : ∀ (b : J.R), CategoryStruct.comp (ι (J.fst b)) (I.fst b) = CategoryStruct.comp (ι (J.snd b)) (I.snd b)) :
                                          (ofι I P ι w).pt = P
                                          def CategoryTheory.Limits.Multifork.IsLimit.mk {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : J.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : J.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) :

                                          This definition provides a convenient way to show that a multifork is a limit.

                                          Equations
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Limits.Multifork.IsLimit.mk_lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} (K : Multifork I) (lift : (E : Multifork I) → E.pt K.pt) (fac : ∀ (E : Multifork I) (i : J.L), CategoryStruct.comp (lift E) (K.ι i) = E.ι i) (uniq : ∀ (E : Multifork I) (m : E.pt K.pt), (∀ (i : J.L), CategoryStruct.comp m (K.ι i) = E.ι i)m = lift E) (E : Multifork I) :
                                            (mk K lift fac uniq).lift E = lift E
                                            theorem CategoryTheory.Limits.Multifork.IsLimit.hom_ext {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} {f g : T K.pt} (h : ∀ (a : J.L), CategoryStruct.comp f (K.ι a) = CategoryStruct.comp g (K.ι a)) :
                                            f = g
                                            def CategoryTheory.Limits.Multifork.IsLimit.lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) :
                                            T K.pt

                                            Constructor for morphisms to the point of a limit multifork.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.Limits.Multifork.IsLimit.fac {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) :
                                              CategoryStruct.comp (lift hK k hk) (K.ι a) = k a
                                              @[simp]
                                              theorem CategoryTheory.Limits.Multifork.IsLimit.fac_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} {I : MulticospanIndex J C} {K : Multifork I} (hK : IsLimit K) {T : C} (k : (a : J.L) → T I.left a) (hk : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) {Z : C} (h : I.left a Z) :

                                              Given a multifork, we may obtain a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                Given a fork over ∏ᶜ I.left ⇉ ∏ᶜ I.right, we may obtain a multifork.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  Multifork.toPiFork as a functor.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Multifork.ofPiFork as a functor.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      The category of multiforks is equivalent to the category of forks over ∏ᶜ I.left ⇉ ∏ᶜ I.right. It then follows from CategoryTheory.IsLimit.ofPreservesConeTerminal (or reflects) that it preserves and reflects limit cones.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For

                                                        The maps to the cocone point of a multicofork from the objects on the right.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.Multicofork.π_comp_hom {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : J.R) :
                                                          CategoryStruct.comp (K₁.π b) f.hom = K₂.π b
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.Multicofork.π_comp_hom_assoc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K₁ K₂ : Multicofork I) (f : K₁ K₂) (b : J.R) {Z : C} (h : K₂.pt Z) :
                                                          def CategoryTheory.Limits.Multicofork.ofπ {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) :

                                                          Construct a multicofork using a collection π of morphisms.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.Limits.Multicofork.ofπ_pt {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) :
                                                            (ofπ I P π w).pt = P
                                                            @[simp]
                                                            theorem CategoryTheory.Limits.Multicofork.ofπ_ι_app {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) (P : C) (π : (b : J.R) → I.right b P) (w : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (π (J.fst a)) = CategoryStruct.comp (I.snd a) (π (J.snd a))) (x : WalkingMultispan J) :
                                                            (ofπ I P π w).ι.app x = match x with | WalkingMultispan.left a => CategoryStruct.comp (I.fst a) (π (J.fst a)) | WalkingMultispan.right a => π a
                                                            def CategoryTheory.Limits.Multicofork.IsColimit.mk {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : J.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : J.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) :

                                                            This definition provides a convenient way to show that a multicofork is a colimit.

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem CategoryTheory.Limits.Multicofork.IsColimit.mk_desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} {I : MultispanIndex J C} (K : Multicofork I) (desc : (E : Multicofork I) → K.pt E.pt) (fac : ∀ (E : Multicofork I) (i : J.R), CategoryStruct.comp (K.π i) (desc E) = E.π i) (uniq : ∀ (E : Multicofork I) (m : K.pt E.pt), (∀ (i : J.R), CategoryStruct.comp (K.π i) m = E.π i)m = desc E) (E : Multicofork I) :
                                                              (mk K desc fac uniq).desc E = desc E

                                                              Given a multicofork, we may obtain a cofork over ∐ I.left ⇉ ∐ I.right.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For

                                                                Given a cofork over ∐ I.left ⇉ ∐ I.right, we may obtain a multicofork.

                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For

                                                                  Multicofork.toSigmaCofork as a functor.

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For

                                                                    Multicofork.ofSigmaCofork as a functor.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For

                                                                      The category of multicoforks is equivalent to the category of coforks over ∐ I.left ⇉ ∐ I.right. It then follows from CategoryTheory.IsColimit.ofPreservesCoconeInitial (or reflects) that it preserves and reflects colimit cocones.

                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        @[reducible, inline]

                                                                        For I : MulticospanIndex J C, we say that it has a multiequalizer if the associated multicospan has a limit.

                                                                        Equations
                                                                        Instances For
                                                                          @[reducible, inline]

                                                                          For I : MultispanIndex J C, we say that it has a multicoequalizer if the associated multicospan has a limit.

                                                                          Equations
                                                                          Instances For
                                                                            @[reducible, inline]

                                                                            The canonical map from the multiequalizer to the objects on the left.

                                                                            Equations
                                                                            Instances For
                                                                              @[reducible, inline]
                                                                              abbrev CategoryTheory.Limits.Multiequalizer.lift {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) :

                                                                              Construct a morphism to the multiequalizer from its universal property.

                                                                              Equations
                                                                              Instances For
                                                                                theorem CategoryTheory.Limits.Multiequalizer.lift_ι {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) :
                                                                                CategoryStruct.comp (lift I W k h) (ι I a) = k a
                                                                                theorem CategoryTheory.Limits.Multiequalizer.lift_ι_assoc {C : Type u} [Category.{v, u} C] {J : MulticospanShape} (I : MulticospanIndex J C) [HasMultiequalizer I] (W : C) (k : (a : J.L) → W I.left a) (h : ∀ (b : J.R), CategoryStruct.comp (k (J.fst b)) (I.fst b) = CategoryStruct.comp (k (J.snd b)) (I.snd b)) (a : J.L) {Z : C} (h✝ : I.left a Z) :

                                                                                The multiequalizer is isomorphic to the equalizer of ∏ᶜ I.left ⇉ ∏ᶜ I.right.

                                                                                Equations
                                                                                • One or more equations did not get rendered due to their size.
                                                                                Instances For

                                                                                  The canonical injection multiequalizer I ⟶ ∏ᶜ I.left.

                                                                                  Equations
                                                                                  • One or more equations did not get rendered due to their size.
                                                                                  Instances For
                                                                                    @[reducible, inline]

                                                                                    The canonical map from the multiequalizer to the objects on the left.

                                                                                    Equations
                                                                                    Instances For
                                                                                      @[reducible, inline]
                                                                                      abbrev CategoryTheory.Limits.Multicoequalizer.desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) :

                                                                                      Construct a morphism from the multicoequalizer from its universal property.

                                                                                      Equations
                                                                                      Instances For
                                                                                        theorem CategoryTheory.Limits.Multicoequalizer.π_desc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) (b : J.R) :
                                                                                        CategoryStruct.comp (π I b) (desc I W k h) = k b
                                                                                        theorem CategoryTheory.Limits.Multicoequalizer.π_desc_assoc {C : Type u} [Category.{v, u} C] {J : MultispanShape} (I : MultispanIndex J C) [HasMulticoequalizer I] (W : C) (k : (b : J.R) → I.right b W) (h : ∀ (a : J.L), CategoryStruct.comp (I.fst a) (k (J.fst a)) = CategoryStruct.comp (I.snd a) (k (J.snd a))) (b : J.R) {Z : C} (h✝ : W Z) :

                                                                                        The multicoequalizer is isomorphic to the coequalizer of ∐ I.left ⇉ ∐ I.right.

                                                                                        Equations
                                                                                        • One or more equations did not get rendered due to their size.
                                                                                        Instances For

                                                                                          The canonical projection ∐ I.rightmulticoequalizer I.

                                                                                          Equations
                                                                                          • One or more equations did not get rendered due to their size.
                                                                                          Instances For