Documentation

Mathlib.CategoryTheory.Comma.StructuredArrow.CommaMap

Structured arrow categories on Comma.map #

We characterize structured arrow categories on arbitrary instances of Comma.map as a comma category itself.

def CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') :
Functor (StructuredArrow X (Comma.map α β)) (Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β)))

The functor establishing the equivalence StructuredArrow.commaMapEquivalence.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') {Y Z : StructuredArrow X (Comma.map α β)} (f : Y Z) :
    ((commaMapEquivalenceFunctor α β X).map f).right = homMk f.right.right
    @[simp]
    theorem CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_map_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') {Y Z : StructuredArrow X (Comma.map α β)} (f : Y Z) :
    ((commaMapEquivalenceFunctor α β X).map f).left = homMk f.right.left
    @[simp]
    theorem CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (Y : StructuredArrow X (Comma.map α β)) :
    ((commaMapEquivalenceFunctor α β X).obj Y).right = mk Y.hom.right
    @[simp]
    theorem CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_hom {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (Y : StructuredArrow X (Comma.map α β)) :
    ((commaMapEquivalenceFunctor α β X).obj Y).hom = homMk Y.right.hom
    @[simp]
    theorem CategoryTheory.StructuredArrow.commaMapEquivalenceFunctor_obj_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (Y : StructuredArrow X (Comma.map α β)) :
    ((commaMapEquivalenceFunctor α β X).obj Y).left = mk Y.hom.left
    def CategoryTheory.StructuredArrow.commaMapEquivalenceInverse {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') :
    Functor (Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) (StructuredArrow X (Comma.map α β))

    The inverse functor establishing the equivalence StructuredArrow.commaMapEquivalence.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_obj {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (Y : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
      (commaMapEquivalenceInverse α β X).obj Y = mk { left := Y.left.hom, right := Y.right.hom, w := }
      @[simp]
      theorem CategoryTheory.StructuredArrow.commaMapEquivalenceInverse_map {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') {Y Z : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))} (f : Y Z) :
      (commaMapEquivalenceInverse α β X).map f = homMk { left := f.left.right, right := f.right.right, w := }
      def CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') :

      The unit establishing the equivalence StructuredArrow.commaMapEquivalence.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        ((commaMapEquivalenceUnitIso α β X).inv.app X✝).right.left = CategoryStruct.id X✝.right.left
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_right_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        ((commaMapEquivalenceUnitIso α β X).inv.app X✝).right.right = CategoryStruct.id X✝.right.right
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        =
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_left {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        ((commaMapEquivalenceUnitIso α β X).hom.app X✝).right.left = CategoryStruct.id X✝.right.left
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_hom_app_right_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        ((commaMapEquivalenceUnitIso α β X).hom.app X✝).right.right = CategoryStruct.id X✝.right.right
        @[simp]
        theorem CategoryTheory.StructuredArrow.commaMapEquivalenceUnitIso_inv_app_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : StructuredArrow X (Comma.map α β)) :
        =
        def CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') :
        (commaMapEquivalenceInverse α β X).comp (commaMapEquivalenceFunctor α β X) Functor.id (Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β)))

        The counit functor establishing the equivalence StructuredArrow.commaMapEquivalence.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          =
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          =
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          ((commaMapEquivalenceCounitIso α β X).hom.app X✝).right.right = CategoryStruct.id X✝.right.right
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_left_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          ((commaMapEquivalenceCounitIso α β X).hom.app X✝).left.right = CategoryStruct.id X✝.left.right
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          ((commaMapEquivalenceCounitIso α β X).inv.app X✝).left.right = CategoryStruct.id X✝.left.right
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_right_right {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          ((commaMapEquivalenceCounitIso α β X).inv.app X✝).right.right = CategoryStruct.id X✝.right.right
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_hom_app_right_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          =
          @[simp]
          theorem CategoryTheory.StructuredArrow.commaMapEquivalenceCounitIso_inv_app_left_left_down_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') (X✝ : Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))) :
          =
          def CategoryTheory.StructuredArrow.commaMapEquivalence {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {T : Type u₃} [Category.{v₃, u₃} T] {L : Functor C T} {R : Functor D T} {C' : Type u₄} [Category.{v₄, u₄} C'] {D' : Type u₅} [Category.{v₅, u₅} D'] {T' : Type u₆} [Category.{u₆, u₆} T'] {L' : Functor C' T'} {R' : Functor D' T'} {F₁ : Functor C C'} {F₂ : Functor D D'} {F : Functor T T'} (α : F₁.comp L' L.comp F) (β : R.comp F F₂.comp R') [IsIso β] (X : Comma L' R') :
          StructuredArrow X (Comma.map α β) Comma (map₂ (CategoryStruct.id (L'.obj X.left)) α) (map₂ X.hom (inv β))

          The structured arrow category on the functor Comma.map α β, with β a natural isomorphism, is equivalent to a comma category on two instances of StructuredArrow.map₂.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For