Extremal epimorphisms #
An extremal epimorphism p : X ⟶ Y
is an epimorphism which does not factor
through any proper subobject of Y
. In case the category has equalizers,
we show that a morphism p : X ⟶ Y
which does not factor through
any proper subobject of Y
is automatically an epimorphism, and also
an extremal epimorphism. We also show that a strong epimorphism
is an extremal epimorphism, and that both notions coincide when
the category has pullbacks.
References #
- https://ncatlab.org/nlab/show/extremal+epimorphism
class
CategoryTheory.ExtremalEpi
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
extends CategoryTheory.Epi f :
An extremal epimorphism f : X ⟶ Y
is an epimorphism which does not
factor through any proper subobject of Y
.
Instances
theorem
CategoryTheory.ExtremalEpi.subobject_eq_top
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[ExtremalEpi f]
{A : Subobject Y}
(hA : A.Factors f)
:
theorem
CategoryTheory.ExtremalEpi.mk_of_hasEqualizers
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[Limits.HasEqualizers C]
(hf : ∀ ⦃Z : C⦄ (p : X ⟶ Z) (i : Z ⟶ Y), CategoryStruct.comp p i = f → ∀ [Mono i], IsIso i)
:
instance
CategoryTheory.instExtremalEpiOfStrongEpi
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[StrongEpi f]
:
theorem
CategoryTheory.extremalEpi_iff_strongEpi_of_hasPullbacks
{C : Type u}
[Category.{v, u} C]
{X Y : C}
(f : X ⟶ Y)
[Limits.HasPullbacks C]
: