Finite categories are equivalent to category in Type 0
. #
@[reducible, inline]
A FinCategory α
is equivalent to a category with objects in Type
.
Equations
Instances For
instance
CategoryTheory.FinCategory.instFintypeHomObjAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
{i : CategoryTheory.FinCategory.ObjAsType α}
{j : CategoryTheory.FinCategory.ObjAsType α}
:
Equations
- CategoryTheory.FinCategory.instFintypeHomObjAsType α = CategoryTheory.FinCategory.fintypeHom ((Fintype.equivFin α).symm i) ((Fintype.equivFin α).symm j)
noncomputable def
CategoryTheory.FinCategory.objAsTypeEquiv
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
:
The constructed category is indeed equivalent to α
.
Equations
- CategoryTheory.FinCategory.objAsTypeEquiv α = (CategoryTheory.inducedFunctor ⇑(Fintype.equivFin α).symm).asEquivalence
Instances For
@[reducible, inline]
A FinCategory α
is equivalent to a fin_category with in Type
.
Equations
Instances For
theorem
CategoryTheory.FinCategory.categoryAsType_comp
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
∀ {X Y Z : CategoryTheory.FinCategory.AsType α} (f : X ⟶ Y) (g : Y ⟶ Z),
CategoryTheory.CategoryStruct.comp f g = (Fintype.equivFin (X ⟶ Z))
(CategoryTheory.CategoryStruct.comp ((Fintype.equivFin (X ⟶ Y)).symm f) ((Fintype.equivFin (Y ⟶ Z)).symm g))
theorem
CategoryTheory.FinCategory.categoryAsType_id
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
(i : CategoryTheory.FinCategory.AsType α)
:
noncomputable instance
CategoryTheory.FinCategory.categoryAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
Equations
@[simp]
theorem
CategoryTheory.FinCategory.asTypeToObjAsType_map
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
{X : CategoryTheory.FinCategory.AsType α}
{Y : CategoryTheory.FinCategory.AsType α}
(a : Fin (Fintype.card (X ⟶ Y)))
:
(CategoryTheory.FinCategory.asTypeToObjAsType α).map a = (Fintype.equivFin (X ⟶ Y)).symm a
@[simp]
theorem
CategoryTheory.FinCategory.asTypeToObjAsType_obj
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
(a : CategoryTheory.FinCategory.AsType α)
:
(CategoryTheory.FinCategory.asTypeToObjAsType α).obj a = id a
noncomputable def
CategoryTheory.FinCategory.asTypeToObjAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
The "identity" functor from AsType α
to ObjAsType α
.
Equations
- CategoryTheory.FinCategory.asTypeToObjAsType α = { obj := id, map := fun {X Y : CategoryTheory.FinCategory.AsType α} => ⇑(Fintype.equivFin (X ⟶ Y)).symm, map_id := ⋯, map_comp := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.FinCategory.objAsTypeToAsType_map
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
{X : CategoryTheory.FinCategory.ObjAsType α}
{Y : CategoryTheory.FinCategory.ObjAsType α}
(a : X ⟶ Y)
:
(CategoryTheory.FinCategory.objAsTypeToAsType α).map a = (Fintype.equivFin (X ⟶ Y)) a
@[simp]
theorem
CategoryTheory.FinCategory.objAsTypeToAsType_obj
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
(a : CategoryTheory.FinCategory.ObjAsType α)
:
(CategoryTheory.FinCategory.objAsTypeToAsType α).obj a = id a
noncomputable def
CategoryTheory.FinCategory.objAsTypeToAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
The "identity" functor from ObjAsType α
to AsType α
.
Equations
- CategoryTheory.FinCategory.objAsTypeToAsType α = { obj := id, map := fun {X Y : CategoryTheory.FinCategory.ObjAsType α} => ⇑(Fintype.equivFin (X ⟶ Y)), map_id := ⋯, map_comp := ⋯ }
Instances For
noncomputable def
CategoryTheory.FinCategory.asTypeEquivObjAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
The constructed category (AsType α
) is equivalent to ObjAsType α
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
CategoryTheory.FinCategory.asTypeFinCategory
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
CategoryTheory.FinCategory.equivAsType
(α : Type u_1)
[Fintype α]
[CategoryTheory.SmallCategory α]
[CategoryTheory.FinCategory α]
:
The constructed category (ObjAsType α
) is indeed equivalent to α
.