Documentation

Mathlib.CategoryTheory.FinCategory.AsType

Finite categories are equivalent to category in Type 0. #

@[reducible, inline]

A FinCategory α is equivalent to a category with objects in Type.

Equations
Instances For

    The constructed category is indeed equivalent to α.

    Equations
    Instances For
      @[reducible, inline]

      A FinCategory α is equivalent to a fin_category with in Type.

      Equations
      Instances For
        theorem CategoryTheory.FinCategory.categoryAsType_comp (α : Type u_1) [Fintype α] [SmallCategory α] [FinCategory α] {X✝ Y✝ Z✝ : AsType α} (f : X✝ Y✝) (g : Y✝ Z✝) :

        The "identity" functor from AsType α to ObjAsType α.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.FinCategory.asTypeToObjAsType_map (α : Type u_1) [Fintype α] [SmallCategory α] [FinCategory α] {x✝ x✝¹ : AsType α} (a : Fin (Fintype.card (x✝ x✝¹))) :
          (asTypeToObjAsType α).map a = (Fintype.equivFin (x✝ x✝¹)).symm a

          The "identity" functor from ObjAsType α to AsType α.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.FinCategory.objAsTypeToAsType_map (α : Type u_1) [Fintype α] [SmallCategory α] [FinCategory α] {x✝ x✝¹ : ObjAsType α} (a : x✝ x✝¹) :
            (objAsTypeToAsType α).map a = (Fintype.equivFin (x✝ x✝¹)) a

            The constructed category (AsType α) is equivalent to ObjAsType α.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              noncomputable def CategoryTheory.FinCategory.equivAsType (α : Type u_1) [Fintype α] [SmallCategory α] [FinCategory α] :
              AsType α α

              The constructed category (ObjAsType α) is indeed equivalent to α.

              Equations
              Instances For