Finite categories are equivalent to category in Type 0
. #
@[reducible, inline]
A FinCategory α
is equivalent to a category with objects in Type
.
Equations
Instances For
instance
CategoryTheory.FinCategory.instFintypeHomObjAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
{i j : ObjAsType α}
:
Equations
noncomputable def
CategoryTheory.FinCategory.objAsTypeEquiv
(α : Type u_1)
[Fintype α]
[SmallCategory α]
:
The constructed category is indeed equivalent to α
.
Equations
Instances For
@[reducible, inline]
A FinCategory α
is equivalent to a fin_category with in Type
.
Equations
Instances For
noncomputable instance
CategoryTheory.FinCategory.categoryAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
SmallCategory (AsType α)
Equations
theorem
CategoryTheory.FinCategory.categoryAsType_comp
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
{X✝ Y✝ Z✝ : AsType α}
(f : X✝ ⟶ Y✝)
(g : Y✝ ⟶ Z✝)
:
CategoryStruct.comp f g = (Fintype.equivFin (X✝ ⟶ Z✝))
(CategoryStruct.comp ((Fintype.equivFin (X✝ ⟶ Y✝)).symm f) ((Fintype.equivFin (Y✝ ⟶ Z✝)).symm g))
theorem
CategoryTheory.FinCategory.categoryAsType_id
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
(x✝ : AsType α)
:
noncomputable def
CategoryTheory.FinCategory.asTypeToObjAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
The "identity" functor from AsType α
to ObjAsType α
.
Equations
- CategoryTheory.FinCategory.asTypeToObjAsType α = { obj := id, map := fun {x x_1 : CategoryTheory.FinCategory.AsType α} => ⇑(Fintype.equivFin (x ⟶ x_1)).symm, map_id := ⋯, map_comp := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.FinCategory.asTypeToObjAsType_map
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
{x✝ x✝¹ : AsType α}
(a : Fin (Fintype.card (x✝ ⟶ x✝¹)))
:
@[simp]
theorem
CategoryTheory.FinCategory.asTypeToObjAsType_obj
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
(a : AsType α)
:
noncomputable def
CategoryTheory.FinCategory.objAsTypeToAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
The "identity" functor from ObjAsType α
to AsType α
.
Equations
- CategoryTheory.FinCategory.objAsTypeToAsType α = { obj := id, map := fun {x x_1 : CategoryTheory.FinCategory.ObjAsType α} => ⇑(Fintype.equivFin (x ⟶ x_1)), map_id := ⋯, map_comp := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.FinCategory.objAsTypeToAsType_obj
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
(a : ObjAsType α)
:
@[simp]
theorem
CategoryTheory.FinCategory.objAsTypeToAsType_map
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
{x✝ x✝¹ : ObjAsType α}
(a : x✝ ⟶ x✝¹)
:
noncomputable def
CategoryTheory.FinCategory.asTypeEquivObjAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
The constructed category (AsType α
) is equivalent to ObjAsType α
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
CategoryTheory.FinCategory.asTypeFinCategory
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
FinCategory (AsType α)
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
CategoryTheory.FinCategory.equivAsType
(α : Type u_1)
[Fintype α]
[SmallCategory α]
[FinCategory α]
:
The constructed category (ObjAsType α
) is indeed equivalent to α
.