Documentation

Mathlib.CategoryTheory.GradedObject.Unitor

The left and right unitors #

Given a bifunctor F : C ⥤ D ⥤ D, an object X : C such that F.obj X ≅ 𝟭 D and a map p : I × J → J such that hp : ∀ (j : J), p ⟨0, j⟩ = j, we define an isomorphism of J-graded objects for any Y : GradedObject J D. mapBifunctorLeftUnitor F X e p hp Y : mapBifunctorMapObj F p ((single₀ I).obj X) Y ≅ Y. Under similar assumptions, we also obtain a right unitor isomorphism mapBifunctorMapObj F p X ((single₀ I).obj Y) ≅ X.

TODO (@joelriou): get the triangle identity.

Given F : C ⥤ D ⥤ D, X : C, e : F.obj X ≅ 𝟭 D and Y : GradedObject J D, this is the isomorphism ((mapBifunctor F I J).obj ((single₀ I).obj X)).obj Y a ≅ Y a.2 when a : I × J is such that a.1 = 0.

Equations
Instances For

    Given F : C ⥤ D ⥤ D, X : C and Y : GradedObject J D, ((mapBifunctor F I J).obj ((single₀ I).obj X)).obj Y a is an initial when a : I × J is such that a.1 ≠ 0.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def CategoryTheory.GradedObject.mapBifunctorLeftUnitorCofan {C : Type u_1} {D : Type u_2} {I : Type u_3} {J : Type u_4} [CategoryTheory.Category.{u_5, u_1} C] [CategoryTheory.Category.{u_6, u_2} D] [Zero I] [DecidableEq I] [CategoryTheory.Limits.HasInitial C] (F : CategoryTheory.Functor C (CategoryTheory.Functor D D)) (X : C) (e : F.obj X CategoryTheory.Functor.id D) [(Y : D) → CategoryTheory.Limits.PreservesColimit (CategoryTheory.Functor.empty C) (F.flip.obj Y)] (p : I × JJ) (hp : ∀ (j : J), p (0, j) = j) (Y : CategoryTheory.GradedObject J D) (j : J) :
      (((CategoryTheory.GradedObject.mapBifunctor F I J).obj ((CategoryTheory.GradedObject.single₀ I).obj X)).obj Y).CofanMapObjFun p j

      Given F : C ⥤ D ⥤ D, X : C, e : F.obj X ≅ 𝟭 D, Y : GradedObject J D and p : I × J → J such that p ⟨0, j⟩ = j for all j, this is the (colimit) cofan which shall be used to construct the isomorphism mapBifunctorMapObj F p ((single₀ I).obj X) Y ≅ Y, see mapBifunctorLeftUnitor.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The cofan mapBifunctorLeftUnitorCofan F X e p hp Y j is a colimit.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Given F : C ⥤ D ⥤ D, X : C, e : F.obj X ≅ 𝟭 D, Y : GradedObject J D and p : I × J → J such that p ⟨0, j⟩ = j for all j, this is the left unitor isomorphism mapBifunctorMapObj F p ((single₀ I).obj X) Y ≅ Y.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            Given F : D ⥤ C ⥤ D, Y : C, e : F.flip.obj X ≅ 𝟭 D and X : GradedObject J D, this is the isomorphism ((mapBifunctor F J I).obj X).obj ((single₀ I).obj Y) a ≅ Y a.2 when a : J × I is such that a.2 = 0.

            Equations
            Instances For

              Given F : D ⥤ C ⥤ D, Y : C and X : GradedObject J D, ((mapBifunctor F J I).obj X).obj ((single₀ I).obj X) a is an initial when a : J × I is such that a.2 ≠ 0.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def CategoryTheory.GradedObject.mapBifunctorRightUnitorCofan {C : Type u_1} {D : Type u_2} {I : Type u_3} {J : Type u_4} [CategoryTheory.Category.{u_5, u_1} C] [CategoryTheory.Category.{u_6, u_2} D] [Zero I] [DecidableEq I] [CategoryTheory.Limits.HasInitial C] (F : CategoryTheory.Functor D (CategoryTheory.Functor C D)) (Y : C) (e : F.flip.obj Y CategoryTheory.Functor.id D) [(X : D) → CategoryTheory.Limits.PreservesColimit (CategoryTheory.Functor.empty C) (F.obj X)] (p : J × IJ) (hp : ∀ (j : J), p (j, 0) = j) (X : CategoryTheory.GradedObject J D) (j : J) :
                (((CategoryTheory.GradedObject.mapBifunctor F J I).obj X).obj ((CategoryTheory.GradedObject.single₀ I).obj Y)).CofanMapObjFun p j

                Given F : D ⥤ C ⥤ D, Y : C, e : F.flip.obj Y ≅ 𝟭 D, X : GradedObject J D and p : J × I → J such that p ⟨j, 0⟩ = j for all j, this is the (colimit) cofan which shall be used to construct the isomorphism mapBifunctorMapObj F p X ((single₀ I).obj Y) ≅ X, see mapBifunctorRightUnitor.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The cofan mapBifunctorRightUnitorCofan F Y e p hp X j is a colimit.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Given F : D ⥤ C ⥤ D, Y : C, e : F.flip.obj Y ≅ 𝟭 D, X : GradedObject J D and p : J × I → J such that p ⟨j, 0⟩ = j for all j, this is the right unitor isomorphism mapBifunctorMapObj F p X ((single₀ I).obj Y) ≅ X.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For