Documentation

Mathlib.CategoryTheory.Groupoid.FreeGroupoid

Free groupoid on a quiver #

This file defines the free groupoid on a quiver, the lifting of a prefunctor to its unique extension as a functor from the free groupoid, and proves uniqueness of this extension.

Main results #

Given the type V and a quiver instance on V:

Implementation notes #

The free groupoid is first defined by symmetrifying the quiver, taking the induced path category and finally quotienting by the reducibility relation.

@[reducible, inline]
abbrev Quiver.Hom.toPosPath {V : Type u} [Quiver V] {X Y : V} (f : X Y) :
X Y

Shorthand for the "forward" arrow corresponding to f in paths <| symmetrify V

Equations
Instances For
    @[reducible, inline]
    abbrev Quiver.Hom.toNegPath {V : Type u} [Quiver V] {X Y : V} (f : X Y) :
    Y X

    Shorthand for the "forward" arrow corresponding to f in paths <| symmetrify V

    Equations
    Instances For
      def Quiver.FreeGroupoid (V : Type u_1) [Q : Quiver V] :
      Type u_1

      The underlying vertices of the free groupoid

      Equations
      Instances For
        @[deprecated Quiver.FreeGroupoid (since := "2025-10-02")]
        def CategoryTheory.FreeGroupoid (V : Type u_1) [Q : Quiver V] :
        Type u_1

        Alias of Quiver.FreeGroupoid.


        The underlying vertices of the free groupoid

        Equations
        Instances For
          def Quiver.FreeGroupoid.quotInv {V : Type u} [Quiver V] {X Y : FreeGroupoid V} (f : X Y) :
          Y X

          The inverse of an arrow in the free groupoid

          Equations
          Instances For

            The inclusion of the quiver on V to the underlying quiver on FreeGroupoid V

            Equations
            Instances For
              theorem Quiver.FreeGroupoid.lift_spec {V : Type u} [Quiver V] {V' : Type u'} [CategoryTheory.Groupoid V'] (φ : V ⥤q V') :
              theorem Quiver.FreeGroupoid.lift_unique {V : Type u} [Quiver V] {V' : Type u'} [CategoryTheory.Groupoid V'] (φ : V ⥤q V') (Φ : CategoryTheory.Functor (FreeGroupoid V) V') ( : of V ⋙q Φ.toPrefunctor = φ) :
              Φ = lift φ

              The functor of free groupoid induced by a prefunctor of quivers

              Equations
              Instances For
                theorem Quiver.freeGroupoidFunctor_comp {V : Type u} [Quiver V] {V' : Type u'} [Quiver V'] {V'' : Type u''} [Quiver V''] (φ : V ⥤q V') (φ' : V' ⥤q V'') :