Documentation

Mathlib.CategoryTheory.GuitartExact.VerticalComposition

Vertical composition of Guitart exact squares #

In this file, we show that the vertical composition of Guitart exact squares is Guitart exact.

@[simp]
theorem CategoryTheory.TwoSquare.whiskerVertical_app {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_4} D₁] [CategoryTheory.Category.{u_10, u_5} D₂] {T : CategoryTheory.Functor C₁ D₁} {L : CategoryTheory.Functor C₁ C₂} {R : CategoryTheory.Functor D₁ D₂} {B : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare T L R B) {L' : CategoryTheory.Functor C₁ C₂} {R' : CategoryTheory.Functor D₁ D₂} (α : L L') (β : R' R) (X : C₁) :
(w.whiskerVertical α β).app X = CategoryTheory.CategoryStruct.comp (β.app (T.obj X)) (CategoryTheory.CategoryStruct.comp (w.app X) (B.map (α.app X)))

Given w : TwoSquare T L R B, one may obtain a 2-square TwoSquare T L' R' B if we provide natural transformations α : L ⟶ L' and β : R' ⟶ R.

Equations
Instances For
    theorem CategoryTheory.TwoSquare.GuitartExact.whiskerVertical {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_9, u_2} C₂] [CategoryTheory.Category.{u_8, u_4} D₁] [CategoryTheory.Category.{u_10, u_5} D₂] {T : CategoryTheory.Functor C₁ D₁} {L : CategoryTheory.Functor C₁ C₂} {R : CategoryTheory.Functor D₁ D₂} {B : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare T L R B) {L' : CategoryTheory.Functor C₁ C₂} {R' : CategoryTheory.Functor D₁ D₂} [w.GuitartExact] (α : L L') (β : R R') :
    (w.whiskerVertical α.hom β.inv).GuitartExact

    A 2-square stays Guitart exact if we replace the left and right functors by isomorphic functors. See also whiskerVertical_iff.

    @[simp]
    theorem CategoryTheory.TwoSquare.GuitartExact.whiskerVertical_iff {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [CategoryTheory.Category.{u_8, u_1} C₁] [CategoryTheory.Category.{u_7, u_2} C₂] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_9, u_5} D₂] {T : CategoryTheory.Functor C₁ D₁} {L : CategoryTheory.Functor C₁ C₂} {R : CategoryTheory.Functor D₁ D₂} {B : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare T L R B) {L' : CategoryTheory.Functor C₁ C₂} {R' : CategoryTheory.Functor D₁ D₂} (α : L L') (β : R R') :
    (w.whiskerVertical α.hom β.inv).GuitartExact w.GuitartExact

    A 2-square is Guitart exact iff it is so after replacing the left and right functors by isomorphic functors.

    instance CategoryTheory.TwoSquare.GuitartExact.instWhiskerVerticalOfIsIsoFunctor {C₁ : Type u_1} {C₂ : Type u_2} {D₁ : Type u_4} {D₂ : Type u_5} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_9, u_2} C₂] [CategoryTheory.Category.{u_8, u_4} D₁] [CategoryTheory.Category.{u_10, u_5} D₂] {T : CategoryTheory.Functor C₁ D₁} {L : CategoryTheory.Functor C₁ C₂} {R : CategoryTheory.Functor D₁ D₂} {B : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare T L R B) {L' : CategoryTheory.Functor C₁ C₂} {R' : CategoryTheory.Functor D₁ D₂} [w.GuitartExact] (α : L L') (β : R' R) [CategoryTheory.IsIso α] [CategoryTheory.IsIso β] :
    (w.whiskerVertical α β).GuitartExact
    Equations
    • =
    @[simp]
    theorem CategoryTheory.TwoSquare.vComp_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} C₃] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_11, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) (X : C₁) :
    (w.vComp w').app X = CategoryTheory.CategoryStruct.comp (R₂.map (w.app X)) (w'.app (L₁.obj X))
    def CategoryTheory.TwoSquare.vComp {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} C₃] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_11, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) :
    CategoryTheory.TwoSquare H₁ (L₁.comp L₂) (R₁.comp R₂) H₃

    The vertical composition of 2-squares.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.TwoSquare.structuredArrowDownwardsComp {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} C₃] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_11, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) (Y₁ : D₁) :
      (w.structuredArrowDownwards Y₁).comp (w'.structuredArrowDownwards (R₁.obj Y₁)) (w.vComp w').structuredArrowDownwards Y₁

      The canonical isomorphism between w.structuredArrowDownwards Y₁ ⋙ w'.structuredArrowDownwards (R₁.obj Y₁) and (w.vComp w').structuredArrowDownwards Y₁.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.TwoSquare.vComp'_app {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} C₃] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_11, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) {L₁₂ : CategoryTheory.Functor C₁ C₃} {R₁₂ : CategoryTheory.Functor D₁ D₃} (eL : L₁.comp L₂ L₁₂) (eR : R₁.comp R₂ R₁₂) (X : C₁) :
        (w.vComp' w' eL eR).app X = CategoryTheory.CategoryStruct.comp (eR.inv.app (H₁.obj X)) (CategoryTheory.CategoryStruct.comp (R₂.map (w.app X)) (CategoryTheory.CategoryStruct.comp (w'.app (L₁.obj X)) (H₃.map (eL.hom.app X))))
        def CategoryTheory.TwoSquare.vComp' {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_8, u_2} C₂] [CategoryTheory.Category.{u_9, u_3} C₃] [CategoryTheory.Category.{u_10, u_4} D₁] [CategoryTheory.Category.{u_11, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) {L₁₂ : CategoryTheory.Functor C₁ C₃} {R₁₂ : CategoryTheory.Functor D₁ D₃} (eL : L₁.comp L₂ L₁₂) (eR : R₁.comp R₂ R₁₂) :
        CategoryTheory.TwoSquare H₁ L₁₂ R₁₂ H₃

        The vertical composition of 2-squares. (Variant where we allow the replacement of the vertical compositions by isomorphic functors.)

        Equations
        • w.vComp' w' eL eR = (w.vComp w').whiskerVertical eL.hom eR.inv
        Instances For
          instance CategoryTheory.TwoSquare.GuitartExact.vComp {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_9, u_2} C₂] [CategoryTheory.Category.{u_11, u_3} C₃] [CategoryTheory.Category.{u_8, u_4} D₁] [CategoryTheory.Category.{u_10, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) [hw : w.GuitartExact] [hw' : w'.GuitartExact] :
          (w.vComp w').GuitartExact
          Equations
          • =
          instance CategoryTheory.TwoSquare.GuitartExact.vComp' {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_7, u_1} C₁] [CategoryTheory.Category.{u_9, u_2} C₂] [CategoryTheory.Category.{u_11, u_3} C₃] [CategoryTheory.Category.{u_8, u_4} D₁] [CategoryTheory.Category.{u_10, u_5} D₂] [CategoryTheory.Category.{u_12, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {L₂ : CategoryTheory.Functor C₂ C₃} {R₂ : CategoryTheory.Functor D₂ D₃} {H₃ : CategoryTheory.Functor C₃ D₃} (w' : CategoryTheory.TwoSquare H₂ L₂ R₂ H₃) [w.GuitartExact] [w'.GuitartExact] {L₁₂ : CategoryTheory.Functor C₁ C₃} {R₁₂ : CategoryTheory.Functor D₁ D₃} (eL : L₁.comp L₂ L₁₂) (eR : R₁.comp R₂ R₁₂) :
          (w.vComp' w' eL eR).GuitartExact
          Equations
          • =
          theorem CategoryTheory.TwoSquare.GuitartExact.vComp_iff_of_equivalences {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_11, u_1} C₁] [CategoryTheory.Category.{u_7, u_2} C₂] [CategoryTheory.Category.{u_8, u_3} C₃] [CategoryTheory.Category.{u_12, u_4} D₁] [CategoryTheory.Category.{u_9, u_5} D₂] [CategoryTheory.Category.{u_10, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {H₃ : CategoryTheory.Functor C₃ D₃} (eL : C₂ C₃) (eR : D₂ D₃) (w' : H₂.comp eR.functor eL.functor.comp H₃) :
          (w.vComp w'.hom).GuitartExact w.GuitartExact
          theorem CategoryTheory.TwoSquare.GuitartExact.vComp'_iff_of_equivalences {C₁ : Type u_1} {C₂ : Type u_2} {C₃ : Type u_3} {D₁ : Type u_4} {D₂ : Type u_5} {D₃ : Type u_6} [CategoryTheory.Category.{u_11, u_1} C₁] [CategoryTheory.Category.{u_7, u_2} C₂] [CategoryTheory.Category.{u_8, u_3} C₃] [CategoryTheory.Category.{u_12, u_4} D₁] [CategoryTheory.Category.{u_9, u_5} D₂] [CategoryTheory.Category.{u_10, u_6} D₃] {H₁ : CategoryTheory.Functor C₁ D₁} {L₁ : CategoryTheory.Functor C₁ C₂} {R₁ : CategoryTheory.Functor D₁ D₂} {H₂ : CategoryTheory.Functor C₂ D₂} (w : CategoryTheory.TwoSquare H₁ L₁ R₁ H₂) {H₃ : CategoryTheory.Functor C₃ D₃} (E : C₂ C₃) (E' : D₂ D₃) (w' : H₂.comp E'.functor E.functor.comp H₃) {L₁₂ : CategoryTheory.Functor C₁ C₃} {R₁₂ : CategoryTheory.Functor D₁ D₃} (eL : L₁.comp E.functor L₁₂) (eR : R₁.comp E'.functor R₁₂) :
          (w.vComp' w'.hom eL eR).GuitartExact w.GuitartExact