Documentation

Mathlib.CategoryTheory.Idempotents.Basic

Idempotent complete categories #

In this file, we define the notion of idempotent complete categories (also known as Karoubian categories, or pseudoabelian in the case of preadditive categories).

Main definitions #

References #

A category is idempotent complete iff all idempotent endomorphisms p split as a composition p = e ≫ i with i ≫ e = 𝟙 _

Instances

    A category is idempotent complete iff for all idempotent endomorphisms, the equalizer of the identity and this idempotent exists.

    In a preadditive category, when p : X ⟶ X is idempotent, then 𝟙 X - p is also idempotent.

    A preadditive category is pseudoabelian iff all idempotent endomorphisms have a kernel.

    @[instance 100]

    An abelian category is idempotent complete.

    theorem CategoryTheory.Idempotents.split_imp_of_iso {C : Type u_1} [Category.{u_2, u_1} C] {X X' : C} (φ : X X') (p : X X) (p' : X' X') (hpp' : CategoryStruct.comp p φ.hom = CategoryStruct.comp φ.hom p') (h : ∃ (Y : C) (i : Y X) (e : X Y), CategoryStruct.comp i e = CategoryStruct.id Y CategoryStruct.comp e i = p) :
    ∃ (Y' : C) (i' : Y' X') (e' : X' Y'), CategoryStruct.comp i' e' = CategoryStruct.id Y' CategoryStruct.comp e' i' = p'
    theorem CategoryTheory.Idempotents.split_iff_of_iso {C : Type u_1} [Category.{u_2, u_1} C] {X X' : C} (φ : X X') (p : X X) (p' : X' X') (hpp' : CategoryStruct.comp p φ.hom = CategoryStruct.comp φ.hom p') :
    (∃ (Y : C) (i : Y X) (e : X Y), CategoryStruct.comp i e = CategoryStruct.id Y CategoryStruct.comp e i = p) ∃ (Y' : C) (i' : Y' X') (e' : X' Y'), CategoryStruct.comp i' e' = CategoryStruct.id Y' CategoryStruct.comp e' i' = p'

    If C and D are equivalent categories, that C is idempotent complete iff D is.