Idempotence of the Karoubi envelope #
In this file, we construct the equivalence of categories
KaroubiKaroubi.equivalence C : Karoubi C ≌ Karoubi (Karoubi C)
for any category C
.
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.idem_f
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
:
CategoryStruct.comp P.p.f P.p.f = P.p.f
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.idem_f_assoc
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
{Z : C}
(h : P.X.X ⟶ Z)
:
CategoryStruct.comp P.p.f (CategoryStruct.comp P.p.f h) = CategoryStruct.comp P.p.f h
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f
(C : Type u_1)
[Category.{u_2, u_1} C]
{P Q : Karoubi (Karoubi C)}
(f : P ⟶ Q)
:
CategoryStruct.comp P.p.f f.f.f = CategoryStruct.comp f.f.f Q.p.f
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.p_comm_f_assoc
(C : Type u_1)
[Category.{u_2, u_1} C]
{P Q : Karoubi (Karoubi C)}
(f : P ⟶ Q)
{Z : C}
(h : Q.X.X ⟶ Z)
:
CategoryStruct.comp P.p.f (CategoryStruct.comp f.f.f h) = CategoryStruct.comp f.f.f (CategoryStruct.comp Q.p.f h)
The canonical functor Karoubi (Karoubi C) ⥤ Karoubi C
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.inverse_map_f
(C : Type u_1)
[Category.{u_2, u_1} C]
{X✝ Y✝ : Karoubi (Karoubi C)}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_X
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
:
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.inverse_obj_p
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
:
instance
CategoryTheory.Idempotents.KaroubiKaroubi.instAdditiveKaroubiInverse
(C : Type u_1)
[Category.{u_2, u_1} C]
[Preadditive C]
:
(inverse C).Additive
The unit isomorphism of the equivalence
Instances For
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_hom_app_f
(C : Type u_1)
[Category.{u_2, u_1} C]
(X : Karoubi C)
:
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.unitIso_inv_app_f
(C : Type u_1)
[Category.{u_2, u_1} C]
(X : Karoubi C)
:
The counit isomorphism of the equivalence
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_hom_app_f_f
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
:
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.counitIso_inv_app_f_f
(C : Type u_1)
[Category.{u_2, u_1} C]
(P : Karoubi (Karoubi C))
:
The equivalence Karoubi C ≌ Karoubi (Karoubi C)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_unitIso
(C : Type u_1)
[Category.{u_2, u_1} C]
:
(equivalence C).unitIso = unitIso C
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_functor
(C : Type u_1)
[Category.{u_2, u_1} C]
:
(equivalence C).functor = toKaroubi (Karoubi C)
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_counitIso
(C : Type u_1)
[Category.{u_2, u_1} C]
:
(equivalence C).counitIso = counitIso C
@[simp]
theorem
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence_inverse
(C : Type u_1)
[Category.{u_2, u_1} C]
:
(equivalence C).inverse = inverse C
instance
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_functor
(C : Type u_1)
[Category.{u_2, u_1} C]
[Preadditive C]
:
(equivalence C).functor.Additive
instance
CategoryTheory.Idempotents.KaroubiKaroubi.equivalence.additive_inverse
(C : Type u_1)
[Category.{u_2, u_1} C]
[Preadditive C]
:
(equivalence C).inverse.Additive