Documentation

Mathlib.CategoryTheory.Join.Sum

Embedding of C ⊕ D into C ⋆ D #

This file constructs a canonical functor Join.fromSum from C ⊕ D to C ⋆ D and give its characterization in terms of the canonical inclusions. We also provide Faithful and EssSurj instances on this functor.

The canonical functor from the sum to the join. It sends inl c to left c and inr d to right d.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Join.fromSum_obj (C : Type u_1) (D : Type u_2) [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (x✝ : C D) :
    (fromSum C D).obj x✝ = match x✝ with | Sum.inl X => left X | Sum.inr X => right X
    @[simp]
    theorem CategoryTheory.Join.fromSum_map_inl {C : Type u_1} (D : Type u_2) [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] {c c' : C} (f : c c') :
    (fromSum C D).map ((Sum.inl_ C D).map f) = (inclLeft C D).map f
    @[simp]
    theorem CategoryTheory.Join.fromSum_map_inr (C : Type u_1) {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] {d d' : D} (f : d d') :
    (fromSum C D).map ((Sum.inr_ C D).map f) = (inclRight C D).map f

    Characterization of fromSum with respect to the left inclusion.

    Equations
    Instances For

      Characterization of fromSum with respect to the right inclusion.

      Equations
      Instances For