Documentation

Mathlib.CategoryTheory.LiftingProperties.Limits

Lifting properties and (co)limits #

In this file, we show some consequences of lifting properties in the presence of certain (co)limits.

theorem CategoryTheory.IsPushout.hasLiftingProperty {C : Type u_1} [Category.{u_2, u_1} C] {X Y Z W : C} {f : X Y} {s : X Z} {g : Z W} {t : Y W} (h : IsPushout s f g t) {Z' W' : C} (g' : Z' W') [HasLiftingProperty f g'] :
theorem CategoryTheory.IsPullback.hasLiftingProperty {C : Type u_1} [Category.{u_2, u_1} C] {X Y Z W : C} {f : X Y} {s : X Z} {g : Z W} {t : Y W} (h : IsPullback s f g t) {X' Y' : C} (f' : X' Y') [HasLiftingProperty f' g] :
instance CategoryTheory.instHasLiftingPropertyInl {C : Type u_1} [Category.{u_2, u_1} C] {X Y Z : C} {f : X Y} {s : X Z} [Limits.HasPushout s f] {T₁ T₂ : C} (p : T₁ T₂) [HasLiftingProperty f p] :
instance CategoryTheory.instHasLiftingPropertyInr {C : Type u_1} [Category.{u_2, u_1} C] {X Y Z : C} {f : X Y} {s : X Z} [Limits.HasPushout s f] {T₁ T₂ : C} (p : T₁ T₂) [HasLiftingProperty s p] :
instance CategoryTheory.instHasLiftingPropertySnd {C : Type u_1} [Category.{u_2, u_1} C] {Y Z W : C} {g : Z W} {t : Y W} [Limits.HasPullback g t] {T₁ T₂ : C} (p : T₁ T₂) [HasLiftingProperty p g] :
instance CategoryTheory.instHasLiftingPropertyFst {C : Type u_1} [Category.{u_2, u_1} C] {Y Z W : C} {g : Z W} {t : Y W} [Limits.HasPullback g t] {T₁ T₂ : C} (p : T₁ T₂) [HasLiftingProperty p t] :
instance CategoryTheory.instHasLiftingPropertyMap {C : Type u_1} [Category.{u_3, u_1} C] {J : Type u_2} {A B : JC} [Limits.HasProduct A] [Limits.HasProduct B] (f : (j : J) → A j B j) {X Y : C} (p : X Y) [∀ (j : J), HasLiftingProperty p (f j)] :
instance CategoryTheory.instHasLiftingPropertyMap_1 {C : Type u_1} [Category.{u_3, u_1} C] {J : Type u_2} {A B : JC} [Limits.HasCoproduct A] [Limits.HasCoproduct B] (f : (j : J) → A j B j) {X Y : C} (p : X Y) [∀ (j : J), HasLiftingProperty (f j) p] :