Constructing equalizers from pullbacks and binary products. #
If a category has pullbacks and binary products, then it has equalizers.
TODO: generalize universe
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.constructEqualizer
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
(F : Functor WalkingParallelPair C)
:
C
Define the equalizing object
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
(F : Functor WalkingParallelPair C)
:
Define the equalizing morphism
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
(F : Functor WalkingParallelPair C)
:
pullbackFst F = pullback.snd (prod.lift (CategoryStruct.id (F.obj WalkingParallelPair.zero)) (F.map WalkingParallelPairHom.left))
(prod.lift (CategoryStruct.id (F.obj WalkingParallelPair.zero)) (F.map WalkingParallelPairHom.right))
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.equalizerCone
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
(F : Functor WalkingParallelPair C)
:
Cone F
Define the equalizing cone
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.equalizerConeIsLimit
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
(F : Functor WalkingParallelPair C)
:
IsLimit (equalizerCone F)
Show the equalizing cone is a limit
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.hasEqualizers_of_hasPullbacks_and_binary_products
{C : Type u}
[Category.{v, u} C]
[HasBinaryProducts C]
[HasPullbacks C]
:
Any category with pullbacks and binary products, has equalizers.
theorem
CategoryTheory.Limits.preservesEqualizers_of_preservesPullbacks_and_binaryProducts
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(G : Functor C D)
[HasBinaryProducts C]
[HasPullbacks C]
[PreservesLimitsOfShape (Discrete WalkingPair) G]
[PreservesLimitsOfShape WalkingCospan G]
:
A functor that preserves pullbacks and binary products also presrves equalizers.
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.constructCoequalizer
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
(F : Functor WalkingParallelPair C)
:
C
Define the equalizing object
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
(F : Functor WalkingParallelPair C)
:
Define the equalizing morphism
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl_eq_pushout_inr
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
(F : Functor WalkingParallelPair C)
:
pushoutInl F = pushout.inr (coprod.desc (CategoryStruct.id (F.obj WalkingParallelPair.one)) (F.map WalkingParallelPairHom.left))
(coprod.desc (CategoryStruct.id (F.obj WalkingParallelPair.one)) (F.map WalkingParallelPairHom.right))
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.coequalizerCocone
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
(F : Functor WalkingParallelPair C)
:
Cocone F
Define the equalizing cocone
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.coequalizerCoconeIsColimit
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
(F : Functor WalkingParallelPair C)
:
Show the equalizing cocone is a colimit
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.hasCoequalizers_of_hasPushouts_and_binary_coproducts
{C : Type u}
[Category.{v, u} C]
[HasBinaryCoproducts C]
[HasPushouts C]
:
Any category with pullbacks and binary products, has equalizers.
theorem
CategoryTheory.Limits.preservesCoequalizers_of_preservesPushouts_and_binaryCoproducts
{C : Type u}
[Category.{v, u} C]
{D : Type u'}
[Category.{v', u'} D]
(G : Functor C D)
[HasBinaryCoproducts C]
[HasPushouts C]
[PreservesColimitsOfShape (Discrete WalkingPair) G]
[PreservesColimitsOfShape WalkingSpan G]
:
A functor that preserves pushouts and binary coproducts also presrves coequalizers.