Constructing equalizers from pullbacks and binary products. #
If a category has pullbacks and binary products, then it has equalizers.
TODO: generalize universe
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.constructEqualizer
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
C
Define the equalizing object
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Define the equalizing morphism
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst_eq_pullback_snd
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.pullbackFst F = CategoryTheory.Limits.pullback.snd
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.id (F.obj CategoryTheory.Limits.WalkingParallelPair.zero))
(F.map CategoryTheory.Limits.WalkingParallelPairHom.left))
(CategoryTheory.Limits.prod.lift
(CategoryTheory.CategoryStruct.id (F.obj CategoryTheory.Limits.WalkingParallelPair.zero))
(F.map CategoryTheory.Limits.WalkingParallelPairHom.right))
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.equalizerCone
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Define the equalizing cone
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Limits.HasEqualizersOfHasPullbacksAndBinaryProducts.equalizerConeIsLimit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Show the equalizing cone is a limit
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.hasEqualizers_of_hasPullbacks_and_binary_products
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
:
Any category with pullbacks and binary products, has equalizers.
theorem
CategoryTheory.Limits.preservesEqualizers_of_preservesPullbacks_and_binaryProducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
(G : CategoryTheory.Functor C D)
[CategoryTheory.Limits.HasBinaryProducts C]
[CategoryTheory.Limits.HasPullbacks C]
[CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair) G]
[CategoryTheory.Limits.PreservesLimitsOfShape CategoryTheory.Limits.WalkingCospan G]
:
A functor that preserves pullbacks and binary products also presrves equalizers.
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.constructCoequalizer
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
C
Define the equalizing object
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Define the equalizing morphism
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl_eq_pushout_inr
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.pushoutInl F = CategoryTheory.Limits.pushout.inr
(CategoryTheory.Limits.coprod.desc
(CategoryTheory.CategoryStruct.id (F.obj CategoryTheory.Limits.WalkingParallelPair.one))
(F.map CategoryTheory.Limits.WalkingParallelPairHom.left))
(CategoryTheory.Limits.coprod.desc
(CategoryTheory.CategoryStruct.id (F.obj CategoryTheory.Limits.WalkingParallelPair.one))
(F.map CategoryTheory.Limits.WalkingParallelPairHom.right))
@[reducible, inline]
abbrev
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.coequalizerCocone
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Define the equalizing cocone
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Limits.HasCoequalizersOfHasPushoutsAndBinaryCoproducts.coequalizerCoconeIsColimit
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
(F : CategoryTheory.Functor CategoryTheory.Limits.WalkingParallelPair C)
:
Show the equalizing cocone is a colimit
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Limits.hasCoequalizers_of_hasPushouts_and_binary_coproducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
:
Any category with pullbacks and binary products, has equalizers.
theorem
CategoryTheory.Limits.preservesCoequalizers_of_preservesPushouts_and_binaryCoproducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
(G : CategoryTheory.Functor C D)
[CategoryTheory.Limits.HasBinaryCoproducts C]
[CategoryTheory.Limits.HasPushouts C]
[CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.Discrete CategoryTheory.Limits.WalkingPair) G]
[CategoryTheory.Limits.PreservesColimitsOfShape CategoryTheory.Limits.WalkingSpan G]
:
A functor that preserves pushouts and binary coproducts also presrves coequalizers.