Connected limits in the over category #
Shows that the forgetful functor Over B ⥤ C
creates connected limits, in particular Over B
has
any connected limit which C
has.
def
CategoryTheory.Over.CreatesConnected.natTransInOver
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
{B : C}
(F : Functor J (Over B))
:
F.comp (forget B) ⟶ (Functor.const J).obj B
(Impl) Given a diagram in the over category, produce a natural transformation from the diagram legs to the specific object.
Equations
- CategoryTheory.Over.CreatesConnected.natTransInOver F = { app := fun (j : J) => (F.obj j).hom, naturality := ⋯ }
Instances For
def
CategoryTheory.Over.CreatesConnected.raiseCone
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
{F : Functor J (Over B)}
(c : Limits.Cone (F.comp (forget B)))
:
(Impl) Given a cone in the base category, raise it to a cone in the over category. Note this is where the connected assumption is used.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Over.CreatesConnected.raiseCone_pt
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
{F : Functor J (Over B)}
(c : Limits.Cone (F.comp (forget B)))
:
(raiseCone c).pt = mk (CategoryStruct.comp (c.π.app (Classical.arbitrary J)) (F.obj (Classical.arbitrary J)).hom)
@[simp]
theorem
CategoryTheory.Over.CreatesConnected.raiseCone_π_app
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
{F : Functor J (Over B)}
(c : Limits.Cone (F.comp (forget B)))
(j : J)
:
theorem
CategoryTheory.Over.CreatesConnected.raised_cone_lowers_to_original
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
{F : Functor J (Over B)}
(c : Limits.Cone (F.comp (forget B)))
:
def
CategoryTheory.Over.CreatesConnected.raisedConeIsLimit
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
{F : Functor J (Over B)}
{c : Limits.Cone (F.comp (forget B))}
(t : Limits.IsLimit c)
:
(Impl) Show that the raised cone is a limit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.Over.forgetCreatesConnectedLimits
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
[IsConnected J]
{B : C}
:
CreatesLimitsOfShape J (forget B)
The forgetful functor from the over category creates any connected limit.
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Over.has_connected_limits
{J : Type u'}
[Category.{v', u'} J]
{C : Type u}
[Category.{v, u} C]
{B : C}
[IsConnected J]
[Limits.HasLimitsOfShape J C]
:
Limits.HasLimitsOfShape J (Over B)
The over category has any connected limit which the original category has.