Conditions for parallelPair
to be initial #
In this file we give sufficient conditions on a category C
and parallel morphisms f g : X ⟶ Y
in C
so that parallelPair f g
becomes an initial functor.
The conditions are that there is a morphism out of X
to every object of C
and that any two
parallel morphisms out of X
factor through the parallel pair f
, g
(h₂ : ∀ ⦃Z : C⦄ (i j : X ⟶ Z), ∃ (a : Y ⟶ Z), i = f ≫ a ∧ j = g ≫ a
).
theorem
CategoryTheory.Limits.parallelPair_initial_mk'
{C : Type u_1}
[Category.{u_2, u_1} C]
{X Y : C}
(f g : X ⟶ Y)
(h₁ : ∀ (Z : C), Nonempty (X ⟶ Z))
(h₂ : ∀ ⦃Z : C⦄ (i j : X ⟶ Z), Zigzag (CostructuredArrow.mk i) (CostructuredArrow.mk j))
:
(parallelPair f g).Initial
theorem
CategoryTheory.Limits.parallelPair_initial_mk
{C : Type u_1}
[Category.{u_2, u_1} C]
{X Y : C}
(f g : X ⟶ Y)
(h₁ : ∀ (Z : C), Nonempty (X ⟶ Z))
(h₂ : ∀ ⦃Z : C⦄ (i j : X ⟶ Z), ∃ (a : Y ⟶ Z), i = CategoryStruct.comp f a ∧ j = CategoryStruct.comp g a)
:
(parallelPair f g).Initial