Documentation

Mathlib.CategoryTheory.Limits.FunctorCategory.EpiMono

Monomorphisms and epimorphisms in functor categories #

A natural transformation f : F ⟶ G between functors K ⥤ C is a mono (resp. epi) iff for all k : K, f.app k is, at least when C has pullbacks (resp. pushouts), see NatTrans.mono_iff_mono_app and NatTrans.epi_iff_epi_app.

instance CategoryTheory.instMonoAppOfFunctor {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {F G : Functor K C} (f : F G) [Limits.HasPullbacks C] [Mono f] (k : K) :
Mono (f.app k)
theorem CategoryTheory.NatTrans.mono_iff_mono_app {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {F G : Functor K C} (f : F G) [Limits.HasPullbacks C] :
Mono f ∀ (k : K), Mono (f.app k)
instance CategoryTheory.instMonoFunctorWhiskerRightOfPreservesMonomorphisms {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {D : Type u''} [Category.{v'', u''} D] {F G : Functor K C} (f : F G) [Limits.HasPullbacks C] [Mono f] (H : Functor C D) [H.PreservesMonomorphisms] :
instance CategoryTheory.instEpiAppOfFunctor {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {F G : Functor K C} (f : F G) [Limits.HasPushouts C] [Epi f] (k : K) :
Epi (f.app k)
theorem CategoryTheory.NatTrans.epi_iff_epi_app {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {F G : Functor K C} (f : F G) [Limits.HasPushouts C] :
Epi f ∀ (k : K), Epi (f.app k)
instance CategoryTheory.instEpiFunctorWhiskerRightOfPreservesEpimorphisms {K : Type u} [Category.{v, u} K] {C : Type u'} [Category.{v', u'} C] {D : Type u''} [Category.{v'', u''} D] {F G : Functor K C} (f : F G) [Limits.HasPushouts C] [Epi f] (H : Functor C D) [H.PreservesEpimorphisms] :