Documentation

Mathlib.CategoryTheory.Limits.FunctorToTypes

Concrete description of (co)limits in functor categories #

Some of the concrete descriptions of (co)limits in Type v extend to (co)limits in the functor category K ⥤ Type v.

theorem CategoryTheory.FunctorToTypes.jointly_surjective {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] (F : Functor J (Functor K (Type w))) (k : K) {t : Limits.Cocone F} (h : Limits.IsColimit t) (x : t.pt.obj k) [∀ (k : K), Limits.HasColimit (F.flip.obj k)] :
∃ (j : J) (y : (F.obj j).obj k), x = (t.ι.app j).app k y
theorem CategoryTheory.FunctorToTypes.jointly_surjective' {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] (F : Functor J (Functor K (Type w))) [∀ (k : K), Limits.HasColimit (F.flip.obj k)] (k : K) (x : (Limits.colimit F).obj k) :
∃ (j : J) (y : (F.obj j).obj k), x = (Limits.colimit.ι F j).app k y
theorem CategoryTheory.FunctorToTypes.colimit.map_ι_apply {J : Type u₁} [Category.{v₁, u₁} J] {K : Type u₂} [Category.{v₂, u₂} K] (F : Functor J (Functor K (Type w))) [Limits.HasColimit F] (j : J) {k k' : K} {f : k k'} {x : (F.obj j).obj k} :
(Limits.colimit F).map f ((Limits.colimit.ι F j).app k x) = (Limits.colimit.ι F j).app k' ((F.obj j).map f x)