Colimits in the category of types #
We show that the category of types has all colimits, by providing the usual concrete models.
The relation defining the quotient type which implements the colimit of a functor F : J ⥤ Type u
.
See CategoryTheory.Limits.Types.Quot
.
Equations
Instances For
A quotient type implementing the colimit of a functor F : J ⥤ Type u
,
as pairs ⟨j, x⟩
where x : F.obj j
, modulo the equivalence relation generated by
⟨j, x⟩ ~ ⟨j', x'⟩
whenever there is a morphism f : j ⟶ j'
so F.map f x = x'
.
Instances For
Inclusion into the quotient type implementing the colimit.
Equations
Instances For
(implementation detail) Part of the universal property of the colimit cocone, but without
assuming that Quot F
lives in the correct universe.
Equations
Instances For
The obvious map from Quot F
to Quot (F ⋙ uliftFunctor.{u'})
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The obvious map from Quot (F ⋙ uliftFunctor.{u'})
to Quot F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence between Quot F
and Quot (F ⋙ uliftFunctor.{u'})
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
(implementation detail) A function Quot F → α
induces a cocone on F
as long as the universes
work out.
Equations
- CategoryTheory.Limits.Types.toCocone f = { pt := α, ι := { app := fun (j : J) => f ∘ CategoryTheory.Limits.Types.Quot.ι F j, naturality := ⋯ } }
Instances For
(internal implementation) the colimit cocone of a functor, implemented as a quotient of a sigma type
Equations
- One or more equations did not get rendered due to their size.
Instances For
(internal implementation) the fact that the proposed colimit cocone is the colimit
Equations
Instances For
The category of types has all colimits.
(internal implementation) the colimit cocone of a functor, implemented as a quotient of a sigma type
Equations
- One or more equations did not get rendered due to their size.
Instances For
(internal implementation) the fact that the proposed colimit cocone is the colimit
Equations
- One or more equations did not get rendered due to their size.
Instances For
The equivalence between the abstract colimit of F
in Type u
and the "concrete" definition as a quotient.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A variant of jointly_surjective
for x : colimit F
.
If a colimit is nonempty, also its index category is nonempty.