Documentation

Mathlib.CategoryTheory.Limits.IndYoneda

Ind- and pro- (co)yoneda lemmas #

We define limit versions of the yoneda and coyoneda lemmas.

Main results #

Notation: categories C, I and functors D : Iᵒᵖ ⥤ C, F : C ⥤ Type.

noncomputable def CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor I C) [HasColimit F] :
Iso (coyoneda.obj { unop := colimit F }) (limit (F.op.comp coyoneda))

Hom is functorially cocontinuous: coyoneda of a colimit is the limit over coyoneda of the diagram.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def CategoryTheory.Limits.colimitHomIsoLimitYoneda {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor I C) [HasColimit F] [HasLimitsOfShape (Opposite I) (Type u₂)] (A : C) :

    Hom is cocontinuous: homomorphisms from a colimit is the limit over yoneda of the diagram.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CategoryTheory.Limits.colimitHomIsoLimitYoneda_hom_comp_π_assoc {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor I C) [HasColimit F] [HasLimitsOfShape (Opposite I) (Type u₂)] (A : C) (i : I) {Z : Type u₂} (h : Quiver.Hom ((yoneda.obj A).obj (F.op.obj { unop := i })) Z) :
      theorem CategoryTheory.Limits.colimitHomIsoLimitYoneda_inv_comp_π_assoc {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor I C) [HasColimit F] [HasLimitsOfShape (Opposite I) (Type u₂)] (A : C) (i : I) {Z : Type u₂} (h : Quiver.Hom ((coyoneda.obj { unop := F.obj i }).obj A) Z) :
      noncomputable def CategoryTheory.Limits.coyonedaOpColimitIsoLimitCoyoneda' {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor (Opposite I) C) [HasColimit F] :

      Variant of coyonedaOoColimitIsoLimitCoyoneda for contravariant F.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def CategoryTheory.Limits.colimitHomIsoLimitYoneda' {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor (Opposite I) C) [HasColimit F] [HasLimitsOfShape I (Type u₂)] (A : C) :

        Variant of colimitHomIsoLimitYoneda for contravariant F.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.Limits.colimitHomIsoLimitYoneda'_inv_comp_π_assoc {C : Type u₁} [Category C] {I : Type v₁} [Category I] (F : Functor (Opposite I) C) [HasColimit F] [HasLimitsOfShape I (Type u₂)] (A : C) (i : I) {Z : Type u₂} (h : Quiver.Hom ((coyoneda.obj { unop := F.obj { unop := i } }).obj A) Z) :
          noncomputable def CategoryTheory.Limits.colimitCoyonedaHomIsoLimit {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) C) (F : Functor C (Type u₂)) [HasColimit (D.rightOp.comp coyoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] :

          Pro-Coyoneda lemma: morphisms from colimit of coyoneda of diagram D to F is limit of F evaluated at D. This variant is for contravariant diagrams, see colimitCoyonedaHomIsoLimit' for a covariant version.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CategoryTheory.Limits.colimitCoyonedaHomIsoLimit_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) C) (F : Functor C (Type u₂)) [HasColimit (D.rightOp.comp coyoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.rightOp.comp coyoneda)) F) (i : I) :
            Eq (limit.π (D.comp (F.comp uliftFunctor)) { unop := i } ((colimitCoyonedaHomIsoLimit D F).hom f)) { down := f.app (D.obj { unop := i }) ((colimit.ι (D.rightOp.comp coyoneda) i).app (D.obj { unop := i }) (CategoryStruct.id (D.obj { unop := i }))) }
            noncomputable def CategoryTheory.Limits.colimitCoyonedaHomIsoLimitLeftOp {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I (Opposite C)) (F : Functor C (Type u₂)) [HasColimit (D.comp coyoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] :

            Pro-Coyoneda lemma: morphisms from colimit of coyoneda of diagram D to F is limit of F evaluated at D. This variant is for contravariant diagrams, see colimitCoyonedaHomIsoLimit' for a covariant version.

            Equations
            Instances For
              noncomputable def CategoryTheory.Limits.colimitYonedaHomIsoLimit {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) (Opposite C)) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.unop.comp yoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] :

              Ind-Yoneda lemma: morphisms from colimit of yoneda of diagram D to F is limit of F evaluated at D. This version is for covariant diagrams, see colimitYonedaHomIsoLimit' for a contravariant version.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def CategoryTheory.Limits.colimitYonedaHomIsoLimitOp {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I C) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.comp yoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] :

                Ind-Yoneda lemma: morphisms from colimit of yoneda of diagram D to F is limit of F evaluated at D. This version is for covariant diagrams, see colimitYonedaHomIsoLimit' for a contravariant version.

                Equations
                Instances For
                  theorem CategoryTheory.Limits.colimitYonedaHomIsoLimitOp_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I C) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.comp yoneda)] [HasLimitsOfShape (Opposite I) (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.comp yoneda)) F) (i : Opposite I) :
                  Eq (limit.π (D.op.comp (F.comp uliftFunctor)) i ((colimitYonedaHomIsoLimitOp D F).hom f)) { down := f.app { unop := D.obj (Opposite.unop i) } ((colimit.ι (D.comp yoneda) (Opposite.unop i)).app { unop := D.obj (Opposite.unop i) } (CategoryStruct.id (D.obj (Opposite.unop i)))) }
                  noncomputable def CategoryTheory.Limits.colimitCoyonedaHomIsoLimit' {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I C) (F : Functor C (Type u₂)) [HasColimit (D.op.comp coyoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] :

                  Pro-Coyoneda lemma: morphisms from colimit of coyoneda of diagram D to F is limit of F evaluated at D. This variant is for covariant diagrams, see colimitCoyonedaHomIsoLimit for a covariant version.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem CategoryTheory.Limits.colimitCoyonedaHomIsoLimit'_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I C) (F : Functor C (Type u₂)) [HasColimit (D.op.comp coyoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.op.comp coyoneda)) F) (i : I) :
                    Eq (limit.π (D.comp (F.comp uliftFunctor)) i ((colimitCoyonedaHomIsoLimit' D F).hom f)) { down := f.app (D.obj i) ((colimit.ι (D.op.comp coyoneda) { unop := i }).app (D.obj i) (CategoryStruct.id (D.obj i))) }
                    noncomputable def CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) (Opposite C)) (F : Functor C (Type u₂)) [HasColimit (D.comp coyoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] :

                    Pro-Coyoneda lemma: morphisms from colimit of coyoneda of diagram D to F is limit of F evaluated at D. This variant is for covariant diagrams, see colimitCoyonedaHomIsoLimit for a covariant version.

                    Equations
                    Instances For
                      theorem CategoryTheory.Limits.colimitCoyonedaHomIsoLimitUnop_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) (Opposite C)) (F : Functor C (Type u₂)) [HasColimit (D.comp coyoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.comp coyoneda)) F) (i : I) :
                      Eq (limit.π (D.unop.comp (F.comp uliftFunctor)) i ((colimitCoyonedaHomIsoLimitUnop D F).hom f)) { down := f.app (Opposite.unop (D.obj { unop := i })) ((colimit.ι (D.comp coyoneda) { unop := i }).app (Opposite.unop (D.obj { unop := i })) (CategoryStruct.id (Opposite.unop (D.obj { unop := i })))) }
                      noncomputable def CategoryTheory.Limits.colimitYonedaHomIsoLimit' {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I (Opposite C)) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.leftOp.comp yoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] :

                      Ind-Yoneda lemma: morphisms from colimit of yoneda of diagram D to F is limit of F evaluated at D. This version is for contravariant diagrams, see colimitYonedaHomIsoLimit for a covariant version.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem CategoryTheory.Limits.colimitYonedaHomIsoLimit'_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor I (Opposite C)) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.leftOp.comp yoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.leftOp.comp yoneda)) F) (i : I) :
                        Eq (limit.π (D.comp (F.comp uliftFunctor)) i ((colimitYonedaHomIsoLimit' D F).hom f)) { down := f.app (D.obj i) ((colimit.ι (D.leftOp.comp yoneda) { unop := i }).app (D.obj i) (CategoryStruct.id (Opposite.unop (D.obj i)))) }
                        noncomputable def CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) C) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.comp yoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] :

                        Ind-Yoneda lemma: morphisms from colimit of yoneda of diagram D to F is limit of F evaluated at D. This version is for contravariant diagrams, see colimitYonedaHomIsoLimit for a covariant version.

                        Equations
                        Instances For
                          theorem CategoryTheory.Limits.colimitYonedaHomIsoLimitRightOp_π_apply {C : Type u₁} [Category C] {I : Type v₁} [Category I] (D : Functor (Opposite I) C) (F : Functor (Opposite C) (Type u₂)) [HasColimit (D.comp yoneda)] [HasLimitsOfShape I (Type (max u₁ u₂))] (f : Quiver.Hom (colimit (D.comp yoneda)) F) (i : I) :
                          Eq (limit.π (D.rightOp.comp (F.comp uliftFunctor)) i ((colimitYonedaHomIsoLimitRightOp D F).hom f)) { down := f.app { unop := D.obj { unop := i } } ((colimit.ι (D.comp yoneda) { unop := i }).app { unop := D.obj { unop := i } } (CategoryStruct.id (D.obj { unop := i }))) }