Documentation

Mathlib.CategoryTheory.Limits.Preserves.Limits

Isomorphisms about functors which preserve (co)limits #

If G preserves limits, and C and D have limits, then for any diagram F : J ⥤ C we have a canonical isomorphism preservesLimitsIso : G.obj (Limit F) ≅ Limit (F ⋙ G). We also show that we can commute IsLimit.lift of a preserved limit with Functor.mapCone: (PreservesLimit.preserves t).lift (G.mapCone c₂) = G.map (t.lift c₂).

The duals of these are also given. For functors which preserve (co)limits of specific shapes, see preserves/shapes.lean.

@[simp]
theorem CategoryTheory.preserves_lift_mapCone {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) {J : Type w} [Category.{w', w} J] (F : Functor J C) [Limits.PreservesLimit F G] (c₁ c₂ : Limits.Cone F) (t : Limits.IsLimit c₁) :
(Limits.isLimitOfPreserves G t).lift (G.mapCone c₂) = G.map (t.lift c₂)

If G preserves limits, we have an isomorphism from the image of the limit of a functor F to the limit of the functor F ⋙ G.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.preservesLimitIso_hom_π_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) {J : Type w} [Category.{w', w} J] (F : Functor J C) [Limits.PreservesLimit F G] [Limits.HasLimit F] (j : J) {Z : D} (h : G.obj (F.obj j) Z) :
    @[deprecated CategoryTheory.preservesLimitIso_hom_π (since := "2024-10-27")]

    Alias of CategoryTheory.preservesLimitIso_hom_π.

    @[simp]
    theorem CategoryTheory.preservesLimitIso_inv_π_assoc {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) {J : Type w} [Category.{w', w} J] (F : Functor J C) [Limits.PreservesLimit F G] [Limits.HasLimit F] (j : J) {Z : D} (h : G.obj (F.obj j) Z) :
    @[deprecated CategoryTheory.preservesLimitIso_inv_π (since := "2024-10-27")]

    Alias of CategoryTheory.preservesLimitIso_inv_π.

    @[deprecated CategoryTheory.lift_comp_preservesLimitIso_hom (since := "2024-10-27")]

    Alias of CategoryTheory.lift_comp_preservesLimitIso_hom.

    If C, D has all limits of shape J, and G preserves them, then preservesLimitsIso is functorial wrt F.

    Equations
    Instances For

      If the comparison morphism G.obj (limit F) ⟶ limit (F ⋙ G) is an isomorphism, then G preserves limits of F.

      @[simp]
      theorem CategoryTheory.preserves_desc_mapCocone {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] (G : Functor C D) {J : Type w} [Category.{w', w} J] (F : Functor J C) [Limits.PreservesColimit F G] (c₁ c₂ : Limits.Cocone F) (t : Limits.IsColimit c₁) :
      (Limits.isColimitOfPreserves G t).desc (G.mapCocone c₂) = G.map (t.desc c₂)

      If G preserves colimits, we have an isomorphism from the image of the colimit of a functor F to the colimit of the functor F ⋙ G.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[deprecated CategoryTheory.ι_preservesColimitIso_inv (since := "2024-10-27")]

        Alias of CategoryTheory.ι_preservesColimitIso_inv.

        @[deprecated CategoryTheory.ι_preservesColimitIso_hom (since := "2024-10-27")]

        Alias of CategoryTheory.ι_preservesColimitIso_hom.

        @[deprecated CategoryTheory.preservesColimitIso_inv_comp_desc (since := "2024-10-27")]

        Alias of CategoryTheory.preservesColimitIso_inv_comp_desc.

        If the comparison morphism colimit (F ⋙ G) ⟶ G.obj (colimit F) is an isomorphism, then G preserves colimits of F.