Preserving images #
In this file, we show that if a functor preserves span and cospan, then it preserves images.
def
CategoryTheory.PreservesImage.iso
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
CategoryTheory.Limits.image (L.map f) ≅ L.obj (CategoryTheory.Limits.image f)
If a functor preserves span and cospan, then it preserves images.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.PreservesImage.iso_inv
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
(CategoryTheory.PreservesImage.iso L f).inv = (CategoryTheory.Limits.StrongEpiMonoFactorisation.mk
(CategoryTheory.Limits.MonoFactorisation.mk (L.obj (CategoryTheory.Limits.image f))
(L.map (CategoryTheory.Limits.image.ι f)) (L.map (CategoryTheory.Limits.factorThruImage f))
⋯)).toMonoIsImage.lift
(CategoryTheory.Limits.Image.monoFactorisation (L.map f))
@[simp]
theorem
CategoryTheory.PreservesImage.iso_hom
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
(CategoryTheory.PreservesImage.iso L f).hom = CategoryTheory.Limits.image.lift
(CategoryTheory.Limits.MonoFactorisation.mk (L.obj (CategoryTheory.Limits.image f))
(L.map (CategoryTheory.Limits.image.ι f)) (L.map (CategoryTheory.Limits.factorThruImage f)) ⋯)
theorem
CategoryTheory.PreservesImage.factorThruImage_comp_hom
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.factorThruImage (L.map f))
(CategoryTheory.PreservesImage.iso L f).hom = L.map (CategoryTheory.Limits.factorThruImage f)
theorem
CategoryTheory.PreservesImage.factorThruImage_comp_hom_assoc
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
{Z : B}
(h : L.obj (CategoryTheory.Limits.image f) ⟶ Z)
:
theorem
CategoryTheory.PreservesImage.hom_comp_map_image_ι
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.PreservesImage.iso L f).hom
(L.map (CategoryTheory.Limits.image.ι f)) = CategoryTheory.Limits.image.ι (L.map f)
theorem
CategoryTheory.PreservesImage.hom_comp_map_image_ι_assoc
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
{Z : B}
(h : L.obj Y ⟶ Z)
:
theorem
CategoryTheory.PreservesImage.inv_comp_image_ι_map
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.PreservesImage.iso L f).inv
(CategoryTheory.Limits.image.ι (L.map f)) = L.map (CategoryTheory.Limits.image.ι f)
theorem
CategoryTheory.PreservesImage.inv_comp_image_ι_map_assoc
{A : Type u₁}
{B : Type u₂}
[CategoryTheory.Category.{v₁, u₁} A]
[CategoryTheory.Category.{v₂, u₂} B]
[CategoryTheory.Limits.HasEqualizers A]
[CategoryTheory.Limits.HasImages A]
[CategoryTheory.StrongEpiCategory B]
[CategoryTheory.Limits.HasImages B]
(L : CategoryTheory.Functor A B)
[∀ {X Y Z : A} (f : X ⟶ Z) (g : Y ⟶ Z), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan f g) L]
[∀ {X Y Z : A} (f : X ⟶ Y) (g : X ⟶ Z), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) L]
{X Y : A}
(f : X ⟶ Y)
{Z : B}
(h : L.obj Y ⟶ Z)
: